
Polyspace® Bug Finder™ Server™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ Reference
© COPYRIGHT 2019-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 3.0 (R2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Commands
1

Analysis Options
2

Analysis Options, Command-Line Only
3

iii

Contents

Commands

1

polyspace-access
(DOS/UNIX) Manage upload or export of Polyspace results from the Polyspace Access web interface

Syntax
polyspace-access -host hostname [configuration options] -create-project
projectFolder

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options]
polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options]

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options]

polyspace-access -host hostname [configuration options] -list-project [
findingsPath]

polyspace-access -host hostname [configuration options] -set-role role -user
username -project-path projectFolderOrFindingsPath
polyspace-access -host hostname [configuration options] -unset-role -user
username -project-path projectFolderOrFindingsPath

polyspace-access -encrypt-password

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options]
polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun]

Description
polyspace-access -host hostname [configuration options] -create-project
projectFolder creates a project folder in the Polyspace Access web interface. The folder can be at
the top of the project hierarchy or a subfolder under an existing project folder.

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options] uploads Polyspace results from a folder or a zipped
file to the Polyspace Access database. Use the upload options to specify a project folder other
than public.

polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options] exports project results from a
project in the Polyspace Access database to a text file whose location you specify with filePath. You
specify the project using either the full path in Polyspace Access or the run ID. Use this command to
export findings to other tools that you use for custom reports. To get the paths to projects and their
last run IDs, use the polyspace-access command with the -list-project command.

1 Commands

1-2

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options] assigns owners to unassigned results in a project in the
Polyspace Access database. You specify the project using either the full path in Polyspace Access or
the run ID. Use the set unassigned findings options to assign findings from different source
files or different groups of source files to different owners. To get the paths to projects and their last
run IDs, use the polyspace-access command with the -list-project command.

polyspace-access -host hostname [configuration options] -list-project [
findingsPath] without the optional argument findingsPath lists the paths to all projects in the
Polyspace Access database and their last run IDs. If you specify the full path to a project with the
argument findingsPath, the command lists the last run ID.

polyspace-access -host hostname [configuration options] -set-role role -user
username -project-path projectFolderOrFindingsPath assigns a role role to the user
specified by username for the specified project or project folder. A user role set for a project folder
applies to all project findings under that folder. You specify the project using either the full path in
Polyspace Access or the last run ID. To get the paths to projects and their last run IDs, use the
polyspace-access command with the -list-project command.

polyspace-access -host hostname [configuration options] -unset-role -user
username -project-path projectFolderOrFindingsPath removes any role previously
assigned to username for the specified project or project folder. You specify the project using either
the full path in Polyspace Access or the last run ID. To get the paths to projects and their last run IDs,
use the polyspace-access command with the -list-project command.

polyspace-access -encrypt-password encrypts the password you use to log into Polyspace
Access. Use the output of this command as the argument of the -encrypted-password option when
you write automation scripts to interact with Polyspace Access.

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options] generates scripts to migrate projects from the
path metrics_dir in Polyspace Metrics to Polyspace Access. The command stores the scripts in
dir. To specify which project findings to migrate, use generate migration commands options.

polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun] migrates projects from Polyspace Metrics to Polyspace Access using
the scripts generated with the -generate-migration-commands command. To view which projects
are migrated without actually migrating the projects, use the -dryrun option.

Examples

Encrypt Password and Set Configuration Options

Polyspace Access requires login credentials. You can enter them at the command line when you
execute a command, or you can generate an encrypted password that you use in automation scripts.

To encrypt your password, use the -encrypt-password command and enter your Polyspace Access
credentials.

polyspace-access -encrypt-password

The command uses the user name and password you enter to generate an encrypted password.

 polyspace-access

1-3

login: jsmith
password:
CRYPTED_PASSWORD KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
Command Completed

If you manage your analysis findings through automated scripts, create a variable to store the
connection configuration and login credentials. Use this variable in your script, or at the command
line to avoid entering your credentials when you execute a command.

set LOGIN=-host my-company-server -port 1234 ^
-protocol https -login jsmith ^
-encrypted-password KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
polyspace-access %LOGIN% -create-project myProject

Create a Project Folder with Restricted Access and Upload to Folder

Suppose that you want to upload a set of findings to Polyspace Access and authorize only some team
members to view these findings.

Create a project folder Restricted at the top of the project hierarchy.

polyspace-access -host my-company-server -port 1234 ^
-create-project Restricted

Set user roles for users aUser and bUser, authorizing them to access the project folder as
contributors.

polyspace-access -host my-company-server ^
-port 1234 -set-role contributor ^
-user aUser -user bUser -project Restricted

Aside from the creator of the project folder and the previous two users, no other user can view or
access any findings uploaded to Restricted.

Upload project findings under Restricted.

polyspace-access -host my-company-server -port 1234 ^
-upload C:\Polyspace_Workspace\projectName\Module_1 ^
-parent-project Restricted

The uploaded findings are stored under Restricted/projectName.

Assign Results to Component Owners and Export Assigned Results

If you follow a component-based development approach, you can assign analysis findings by
component to their respective owners.

Get a list of projects currently stored on the Polyspace Access database.

polyspace-access -host my-company-server ^
-list-project

1 Commands

1-4

The command outputs a list of project findings paths and their last run ID.

Connecting to https://my-company-server:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
multimodule/vxWorks_demo (Code Prover) RUN_ID 16
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 8
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

Assign all red and orange run-time error findings to the owner of all the files in Component_A of
project vxWorks_demo. Perform the same assignment for the owner of Component_B. To specify the
vxWorks_demo project, use the run ID.

polyspace-access -host my-company-server ^
-set-unassigned-findings 16 ^
-owner A_owner -source-contains Component_A ^
-owner B_owner -source-contains Component_B ^
-rte Red -rte Orange

-source-contains Component_A matches all files with a file path that contains Component_A.

-source-contains Component_B matches all files with a file path that contains Component_B,
but excludes files with a file path that contains Component_A.

After you assign findings, export the findings and generate .csv files for each owner containing the
findings assigned to them.

polyspace-access -host my-company-server ^
-export 16 ^
-output C:\Polyspace_Workspace\myResults.csv ^
-output-per-owner

The command generates file myResults.csv containing all findings from the project with run ID 16.
The command also generates files myResutls.csv.A_owner.csv and
myResults.csv.B_owner.csv on the same file path.

Migrate Projects from Metrics to Polyspace Access

If you have projects stored on a Polyspace Metrics server, you can migrate them to the Polyspace
Access database. Log in to your Metrics server to complete this operation.

Generate migration scripts for the projects you want to migrate. Specify the folder path of the
location where the projects are stored, for example C:\Users\jsmith\AppData\Roaming
\Polyspace_RLDatas\results-repository

polyspace-access -generate-migration-commands ^
C:\Users\jsmith\AppData\Roaming\Polyspace_RLDatas\results-repository ^
-output-folder-path C:\Polyspace_Workspace\toMigrate -project-date-after 2017-06

The command generates migration scripts for all projects in the specified metrics folder that were
uploaded on or after June 2017. The scripts are stored in folder C:\Polyspace_Workspace
\toMigrate.

 polyspace-access

1-5

Use the -dryrun option to check which projects will be migrated.

polyspace-access -host my-company-server ^
-migrate -option-file-path ^
C:\Polyspace_Workspace\toMigrate -dryrun

The command output contains a list of projects. Inspect it to ensure that you are migrating the
correct projects.

To perform the migration, rerun the last command without the -dryrun option.

Input Arguments
Connect and Login

hostname — Machine host name
string

Fully qualified host name of the machine hosting the Polyspace Access Gateway service. You must
specify a host name with all polyspace-access commands, except the -generate-migration-
commands and -encrypt-password commands .
Example: -host my-company-server

configuration options — Options to configure connection to Polyspace Access
string

Options to specify connection configuration and login credentials.

Configuration Options

Option Description
-port portNumber Port number of the Polyspace Access Gateway service. The default port

number is 9443.
-protocol http |
https

HTTP protocol used to access Polyspace Access. The default protocol is
https.

-login username

-encryted-password
ENCRYPTED_PASSWD

Login credentials you use to interact with Polyspace Access. The
argument of -encrypted-password is the output of the -encrypt-
password command.

If you do not use these two options, you are prompted to enter your
credentials at the command line.

Miscellaneous Options

Option Description
-output file_path File path where you store command outputs
-tmp-dir folder_path Folder path where you store temporary files generated by the

polyspace-access commands. The default folder path is tmp/
ps_results_server on Linux and C:/Users/%username%/
AppData/Local/Temp/ps_results_server on Windows.

1 Commands

1-6

Option Description
-log File path where you store the command output log. By default the

command does not generate a log file.
-h Display the help information for polyspace-access or one of its

commands.

Create New Folder

projectFolder — Name of project folder
string

Project folder path specified as a string. If the name includes spaces, use double quotes. Specify the
full path to folders nested under a parent folder.

If your folder path involves a folder that does not already exist, the folder is created.
Example: -create-project topFolder
Example: -create-project "topFolder/subFolder/subSubFolder"

Upload Results

pathToFolderOrZipFile — Path to folder or zipped file containing analysis results
string

Folder or zipped file path specified as a string. The folder or zipped file contains analysis results you
want to upload to Polyspace Access. Specify the path of the folder containing the *.psbf, *.pscp, or
*.rte file, or the path of the parent of this folder to upload multiple analysis runs.

For instance, for the Bug Finder results stored in C:\Polyspace_Workspace\myProject
\Module_1\BF_results\ps_results.psbf, specify the path to BF_results or to Module_1. If
the path name includes spaces, use double quotes.
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\BF_results
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\ -project
projectFolder

upload options — Options to specify where to upload results
string

Options to specify path to project folder where you upload results.

Option Description
-parent-project
projectFolder

Path of the parent project folder under which you upload project
findings. If you do not specify a parent project folder, projects are
upload to the public folder.

 polyspace-access

1-7

Option Description
-project
projectFolderOrFindi
ngsPath

If the FOLDER you specify for -upload contains only one analysis run,
for instance ps_results.psbf, this option is optional. Use -project
to rename project findings, or omit it to use the project name from your
Polyspace analysis.

If the FOLDER you specify for -upload contains more than one analysis
run, or if you specify the parent folder of the results folder, this option is
mandatory. Use -project to create a project folder under which all the
analysis runs are stored.

Export Results

findingsToExport — Project findings path or run ID
string

Path or run ID of the project findings that you export. Polyspace assigns a unique run ID to each
analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.
Example: -export "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -export 4

filePath — Path to file containing command output
string

Path to the file that stores the output of the command when you specify the -output option. This
option is mandatory with the -export command.
Example: -output C:\Polyspace_Workspace\myResults.txt

export options — Options to specify which findings to export
string

Options to specify where to export findings, and which subset of findings you export. Use these
options to export findings to other tools you use to create custom reports or other custom review
templates.

Option Description
-output file_path File path where you export the findings. This option is mandatory with

the -export command.
-new-findings Export only new findings compared to the previous analysis (previous

upload with the same project name).
-output-per-owner Use this option to generate files that only contain findings assigned to a

particular user. The files are stored on the path you specify with -
output.

-rte color Type of RTE finding to export. Specify All, Red, Gray, Orange, or
Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

1 Commands

1-8

Option Description
-defects impact Impact of DEFECTS findings to export. Specify All, High, Medium, or

Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Export all custom coding rules findings.
-coding-rules Export all coding rules findings.
-code-metrics Export all code metrics findings.
-global-variables Export all global variables findings.
-review-status
status

Review status of the findings to export. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to export. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-open-findings-for-
sqo sqo_level

Software quality objective or SQO level that must be satisfied. Specify a
number from 1 to 6 for sqo_level. If you specify an SQO level, the
polyspace-access command exports only open findings that must be
fixed or justified to satisfy the requirements of this level.

For more information on the SQO levels, see “Bug Finder Quality
Objectives” (Polyspace Bug Finder Access). The SQO levels 1 to 6
specify an increasingly stricter set of requirements defined in terms of
Polyspace results. The requirements are predefined but you can
customize them in the Polyspace Access web interface.

For instance, SQO level 2 in Code Prover requires that you must not
have unjustified red checks. This specification means that if you use -
open-findings-for-sqo with a level higher than 2, all red checks are
exported and must be subsequently fixed or justified. If you want to
impose this requirement in the earlier SQO level 1, you can customize
level 1 in the Polyspace Access web interface.

You can also use a combination of options. For instance, -coding-rules -severity High exports
coding rule violations that have been assigned a status of High in the Polyspace Access web
interface.

Assign Findings

findingsToAssign — Project findings path or run ID
string

Path or run ID of the project findings that you assign to a user. Polyspace assigns a unique run ID to
each analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.

 polyspace-access

1-9

Example: -set-unassigned-findings "public/Examples/Bug_Finder_Example (Bug
Finder)"

Example: -set-unassigned-findings 4

userToAssign — Polyspace Access user name
string

User name of user you assign as owner of unassigned findings. To assign multiple owners, call the
option for each user.

Each call to -owner must be paired with a call to -source-contains.
Example: -user jsmith

pattern — Pattern to match against file path
string

Pattern to match against file path of project source files. To match file paths for all source files, use -
source-contains /.

Enter a substring from the file path. You cannot use regular expressions.

When you call this option more than once, each instance excludes patterns from previous instances.
For example, -source-contains foo -source-contains bar matches all file paths that contain
foo, then all file paths that contain bar excluding paths that contain foo.

When you assign findings to multiple owners, call this option for each call to -owner.
Example: -source-contains main

set unassigned findings options — Options to specify which findings to assign
string

Options to assign all findings or only a subset based on component or individual source files. To make
an assignment, specify a pattern to match against the folder or file paths to assign.

Option Description
-rte color Type of RTE finding to assign. Specify All, Red, Gray, Orange, or

Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

-defects impact Impact of DEFECTS findings to assign. Specify All, High, Medium, or
Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Assign all custom coding rules findings.
-coding-rules Assign all coding rules findings.
-code-metrics Assign all code metrics findings.
-global-variables Assign all global variables findings.

1 Commands

1-10

Option Description
-review-status
status

Review status of the findings to assign. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to assign. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-dryrun Display command output without making any assignment. Use this
option to check that your assignments are correct.

List Projects

findingsPath — Project findings path
string

Path of the project findings. Specify this optional argument with -list-project to get the path and
the last run ID of the corresponding project findings. If the path name includes spaces, use double
quotes.
Example: -list-project "public/Examples/Bug_Finder_Example (Bug Finder)"

Set and Unset User Roles

role — Level of access permissions for project folder or findings
owner | contributor | forbidden

Level of access to project folder and findings for a user.

• owner: User can move, rename, or delete specified project folders or findings and review their
content.

• contributor: User can review content of specified project folder or findings.
• forbidden: User cannot access specified project folder or findings. Set this role to restrict the

access of a user to a set of project findings inside a project folder that is accessible to the user.

Example: -set-role contributor

username — Polyspace Access user name
string

Polyspace Access user name.
Example: -user jsmith

projectFolderOrFindingsPath — Project folder or findings path
string

Path of a project folder or project findings. When projectFolderOrFindingsPath is the path to a
project folder, the user role you set applies to all subfolders and project findings under that folder. If

 polyspace-access

1-11

the path name includes spaces, use double quotes. To get the project folder or findings path, use -
list-project.
Example: -project-path "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -project-path public

Migrate Results from Metrics to Polyspace Access

metrics_dir — Folder path of Polyspace Metrics projects
string

Path of folder containing the Polyspace Metrics projects you want to migrate to Polyspace Access.
Example: -generate-migration-commands C:\Users\%username%\AppData\Roaming
\Polyspace_RLDatas\results-repository

dir — Output folder for migration scripts
string

Path to folder that stores the output of -generate-migration-commands. Do not specify an
existing folder.
Example: local/Polyspace_Workspace/migration_scripts

generate migration commands options — Options to specify which projects to migrate
string

Option Description
-output-folder-path
dir

Folder path where you want to store the generated command files. Do
not specify an existing folder.

-max-project-runs
int

Number of most recent analysis runs you want to migrate for each
project. For instance, to migrate only the last two analysis runs of a
project, specify 2.

-project-date-after
YYYY[-MM[-DD]]

Only migrate results that were uploaded to Polyspace Metrics on or
after the specified date.

-product productName Product used to analyze and produce project findings, specified as bug-
finder, code-prover, or polyspace-ada.

-analysis-mode mode Analysis mode use to generate project findings, specified as
integration or unit-by-unit.

See Also
Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Send Email Notifications with Polyspace Bug Finder Results”

Introduced in R2018b

1 Commands

1-12

polyspace-bug-finder-server Command
(DOS/UNIX) Run a Bug Finder analysis on a server from the DOS or UNIX command line

Syntax
polyspace-bug-finder-server
polyspace-bug-finder-server -sources sourceFiles [OPTIONS]

polyspace-bug-finder-server -sources-list-file listOfSources [OPTIONS]

polyspace-bug-finder-server -options-file optFile

polyspace-bug-finder-server -h[elp]

Description
polyspace-bug-finder-server [OPTIONS] runs a Bug Finder analysis on a server if your
current folder contains a sources subfolder with source files (.c or .cxx files). The analysis
considers files in sources and all subfolders under sources.

polyspace-bug-finder-server -sources sourceFiles [OPTIONS] runs a Bug Finder
analysis on a server on the source file(s) sourceFiles. You can customize the analysis with
additional options.

polyspace-bug-finder-server -sources-list-file listOfSources [OPTIONS] runs a
Bug Finder analysis on a server on the source files listed in the text file listOfSources. You can
customize the analysis with additional options. Using a sources list file is recommended when you
have many source files. By keeping the list of sources in a text file, the command is shorter and
updates to the list are easier.

polyspace-bug-finder-server -options-file optFile runs a Bug Finder analysis on a
server with the options specified in the option file. When you have many analysis options, an options
file makes it easier to run the same analysis again.

polyspace-bug-finder-server -h[elp] lists a summary of possible analysis options.

Examples

Run Analysis by Directly Specifying Options

Run a Bug Finder analysis on a server by specifying analysis options in the run command itself. This
example uses source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012 mandatory
rules, programming and numerical defects, and using GNU 4.7 compiler settings. This example
command is split by ^ characters for readability. In practice, you can put all commands on one line.

 polyspace-bug-finder-server Command

1-13

polyspaceroot\polyspace\bin\polyspace-bug-finder-server^
 -sources ^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

After analysis, you can upload the results to the Polyspace Bug Finder Access™ interface for review.
See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Run Analysis with Options File

Run a Bug Finder analysis on a server by specifying analysis options with an options file. This
example uses source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c
-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-bug-finder-server -options-file myOptionsFile.txt

After analysis, you can upload the results to the Polyspace Bug Finder Access interface for review.
See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a string. If the
files are not in the current folder (pwd), sourceFiles must include a full or relative path. To avoid
errors because of paths with spaces, add quotes " " around the path. For more information, see -
sources.

If your current folder contains a sources subfolder with the source files, you can omit the -sources
flag. The analysis considers files in sources and all subfolders under sources.

1 Commands

1-14

Example: -sources myFile.c, -sources C:\mySources\myFile1.c,C:\mySources
\myFile2.c

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file followed by the
file. If the files are not in the current folder (pwd), listOfSources must include a full or relative
path. To avoid errors because of paths with spaces, add quotes " " around the path. For more
information, see -sources-list-file.
Example: -sources-list-file filename.txt, -sources-list-file "C:\ps_analysis
\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if applicable value.
For syntax specifications, see the individual analysis option reference pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the file. For
more information, see -options-file.
Example: -options-file opts.txt, -options-file "C:\ps_analysis\options.txt"

See Also
Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Prepare Scripts for Polyspace Analysis”
“Analysis Options”

Introduced in R2019a

 polyspace-bug-finder-server Command

1-15

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

Description
polyspace-configure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and uses -option
value to modify the default operation of polyspace-configure. Specify the modifiers before
buildCommand, otherwise they are considered as options in the build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

Open the Polyspace project in the Polyspace user interface.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

1 Commands

1-16

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polyspace-configure,
enclose them in double quotes. For more information on the supported syntax for glob patterns, see
“polyspace-configure Source Files Selection Syntax”.

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make targetName
buildOptions to build your source code. In this example, you use polyspace-configure to trace
your build system but do not create a Polyspace project. Instead you create an options file that you
can use to run Polyspace analysis from command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

 polyspace-configure

1-17

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using polyspace-
bug-finder-server.

-allow-build-error None Option to create a Polyspace project even if an error
occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

1 Commands

1-18

Option Argument Description
-debug None Option to store debug information for use by

MathWorks® technical support.

This option has been superseded by the option -
easy-debug.

-easy-debug Path Option to store debug information for use by
MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU®

and Visual C++® compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

 polyspace-configure

1-19

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Create Polyspace Analysis
Configuration from Build Command”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without creating a
Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

1 Commands

1-20

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Create Polyspace Analysis Configuration
from AUTOSAR Specifications” (Polyspace Code
Prover Server).

• Running Polyspace in Eclipse™.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

 polyspace-configure

1-21

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

1 Commands

1-22

Option Argument Description
-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

 polyspace-configure

1-23

See Also
Topics
“Create Polyspace Analysis Configuration from Build Command”
“Modularize Polyspace Analysis by Using Build Command”

Introduced in R2013b

1 Commands

1-24

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally or on Polyspace Access

Syntax
polyspace-report-generator -template <template> [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir <
FOLDER>] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-dir <
FOLDER>] [-set-language-english]

polyspace-report-generator -template <template> -host <HOSTNAME> -run-id <
RUN_ID> [ACCESS_OPTIONS] [OPTIONS]
polyspace-report-generator -generate-results-list-file -host <HOSTNAME> -run-
id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -generate-variable-access-file -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -configure-keystore

Description
polyspace-report-generator -template <template> [OPTIONS] generates a report by
using TEMPLATE for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir <
FOLDER>] [-set-language-english] exports the analysis results stored locally in FOLDER to a
tab-delimited text file. The file contains the result information available on the Results List pane in
the user interface. For more information on the exported results list, see “View Exported Results”
(Polyspace Bug Finder).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -generate-variable-access-file [-results-dir <
FOLDER>] [-set-language-english] exports the list of global variables in your code from the
Code Prover analysis stored locally in FOLDER to a tab-delimited text file. The file contains the
information available on the Variable Access pane in the user interface. For more information on the
exported variables list, see “Global Variables” (Polyspace Code Prover Access).

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -template <template> -host <HOSTNAME> -run-id <
RUN_ID> [ACCESS_OPTIONS] [OPTIONS] generates a report by using TEMPLATE for the analysis
results run RUN_ID stored on Polyspace Access. HOSTNAME is the fully qualified host name of the
machine that hosts Polyspace Access.

 polyspace-report-generator

1-25

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the path from which you call the
command.

polyspace-report-generator -generate-results-list-file -host <HOSTNAME> -run-
id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english] exports the analysis results run
RUN_ID stored on Polyspace Access to a tab-delimited text file. The file contains the result
information available on the Results List pane in the Polyspace Access web interface. HOSTNAME is
the fully qualified host name of the machine that hosts Polyspace Access. For more information on the
exported results list, see “Results List” (Polyspace Bug Finder Access).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

polyspace-report-generator -generate-variable-access-file -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english] exports the list of global
variables in your code from the Code Prover analysis run RUN_ID stored on Polyspace Access to a
tab-delimited text file. The file contains the information available on the Variable Access pane in the
Polyspace Access web interface. HOSTNAME is the fully qualified host name of the machine that hosts
Polyspace Access. For more information on the exported variables list, see “View Exported Variable
List” (Polyspace Code Prover).

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

polyspace-report-generator -configure-keystore configures the report generator to
communicate with Polyspace Access over HTTPS.

Run this one-time configuration step if Polyspace Access is configured to use the HTTPS protocol and
you do not have a Polyspace Bug Finder desktop license, or you have a desktop license but you have
not configured the desktop UI to communicate with Polyspace Access over HTTPS. Before running
this command, generate a client keystore to store the SSL certificate that Polyspace Access uses for
HTTPS. See “Generate a Client Keystore” (Polyspace Bug Finder Access).

Examples

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a variable
report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\Polyspace\R2019a\toolbox\polyspace^
\psrptgen\templates\bug_finder
SET report_templates=%template_path%\BugFinder.rpt,^
%template_path%\CodingStandards.rpt

Generate the reports from the templates that you specified in report_templates for analysis
results of Polyspace project myProject.

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result ^
-format PDF

1 Commands

1-26

The command generates two PDF reports, myProject_BugFinder.PDF and
myProject_CodingStandards.PDF. The reports are stored in C:\Polyspace_Workspace
\myProject\Module_1\BF_Result\Polyspace-Doc. For more information on the content of the
reports, see Bug Finder and Code Prover report (-report-template).

Configure Report Generator with Client Keystore

If you configure Polyspace Access to use the HTTPS protocol, you must generate a client keystore
where you store the SSL certificate that Polyspace Access uses, and configure polyspace-report-
generator to use that keystore. See “Generate a Client Keystore” (Polyspace Bug Finder Access).
This one-time configuration enables the report generator to communicate with Polyspace Access over
HTTPS.

To configure the report generator with a client keystore, use the polyspace-report-generator -
configure-keystore command. Follow the prompts to provide the URL you use to log into
Polyspace Access, the full path to the keystore file you generated, and the keystore password.
polyspace-report-generator -configure-keystore
Location: US, user name: jsmit, id: 62600@us-jsmith, print mode: false
Enter the Polyspace Access URL using form http[s]://<host>:<port> :
https://myAccessServer:9443
Enter full path to client keystore file :
C:\R2019b\ssl\client-cert.jks
Enter client keystore password :

The keystore has been configured

You must run the keystore configuration command again if:

• The Polyspace Access URL changes, for instance if you use a different port number.
• The path to the keystore file changes.
• The keystore password changes.

Generate Report and Variables List from Polyspace Access

Note To use the command-line for generating reports of results stored on Polyspace Access, you
must have a Polyspace Bug Finder Server or Polyspace Code Prover™ Server installation.

Suppose that you want to generate a report and export the variables list for the results of a Code
Prover analysis stored on the Polyspace Access database.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store your Polyspace Access login credentials in a variable LOGIN.

 polyspace-report-generator

1-27

set LOGIN=-host jsmith ^
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To specify project results on the Polyspace Access, specify the run ID of the project. To obtain a list of
projects with their latest run ID, use the polyspace-access with option -list-project.

polyspace-access -host myAccessServer %LOGIN% -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on the command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access instance with
host name myAccessServer. The URL of this instance of Polyspace Access is https://
myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator %LOGIN% ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

The command creates report myReport.docx by using the template that you specify. The report is
stored in folder Polyspace-Doc on the path from which you called the command.

Generate a tab-delimited text file that contains a list of global variables in your code for the specified
analysis results.

polyspace-report-generator %LOGIN%^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

The list of global variables Variable_View.txt is stored in the same folder as the generated
report. For more information on the exported variables list, see “Global Variables” (Polyspace Code
Prover Access).

Input Arguments
template — path to report template file
string

Path to the report template that you use to generate an analysis report. To generate multiple reports,
specify a comma-separated list of report template paths (do not put a space after the commas). The
templates are available in polyspaceroot\toolbox\polyspace\psrptgen\templates\ as .rpt
files. Here, polyspaceroot is the Polyspace installation folder. For more information on the
available templates, see Bug Finder and Code Prover report (-report-template).

1 Commands

1-28

This option is not compatible with -generate-variable-access-file and -generate-
results-list-file.
Example: C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates
\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodingStandards.rpt

FOLDER — Analysis results folder path
string

Path to the folder containing analysis results for which you generate a report, or analysis results from
which you export a list of results or global variables (Code Prover). To generate a report for multiple
verifications, specify a comma-separated list of folder paths (do not put a space after the commas). If
you do not specify a folder path, the command generates a report for analysis results in the current
folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project
\Module_2\results,C:\Polyspace_Workspace\My_project\Module_3\other_results

HOSTNAME — Polyspace Access machine host name
string

Fully qualified host name of the machine that hosts the Polyspace Access Gateway API service. You
must specify a host name to generate a report for results on the Polyspace Access database.
Example: my-company-server

RUN_ID — Polyspace Access run ID
integer

Run ID of the project findings for which you generate a report. Polyspace assigns a unique run ID to
each analysis run that you upload to the Polyspace Access. To get the run ID of project findings, use
the command polyspace-access with option -list-project.
Example: 4

OPTIONS — Options for generated report
string

Option Description
-format HTML | PDF | WORD File format of the report that you generate. By

default, the command generates a WORD
document.

To generate reports in multiple formats, specify a
comma-separated list of formats. (Do not put a
space after the commas). For instance, -format
PDF,HTML.

This option is not compatible with -generate-
variable-access-file and -generate-
results-list-file.

 polyspace-report-generator

1-29

Option Description
-output-name outputName Name of the generated report or folder name if

you generate multiple reports.

The command stores outputName on the path
from which you call the command. To store the
generated files in a different folder, specify the
full path of the folder, for instance -output-
name C:\PathTo\OtherFolder.

-results-dir FOLDER_1,...,FOLDER_N Path to the locally stored results folder. To
generate reports for multiple analyses, specify a
comma-separated list of folder path. (Do not put a
space after the commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this option if
your display language is set to another language.

-h Display the help information.

ACCESS_OPTIONS — Options for Polyspace Access
string

Option Description
-host HOST_NAME Fully qualified host name of the machine that

hosts the Polyspace Access Gateway API service.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

-run-id RUN_ID Run ID of the project. Polyspace assigns a unique
run ID to each analysis run that you upload. To
get the last run ID of a project, use the -list-
project option of the polyspace-access
command.

For more information on the command, see
polyspace-access.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

-all-units Specify this option to generate a report for all
units from a unit by unit analysis.

When you use this option, specify the run ID of
only one unit with -run-id. The command
includes the other units from the analysis in the
report.

-port portNumber Port number of the Polyspace Access instance.
Default value is 9443.

1 Commands

1-30

Option Description
-protocol http | https HTTP protocol used to connect to Polyspace

Access. Default value is https.
-login username

-encryted-password ENCRYPTED_PASSWD

Credentials that you use to log into Polyspace
Access. The argument of -encrypted-
password is the output of the polyspace-
access -encrypt-password command.

For more information on the command, see
polyspace-access.

See Also

Introduced in R2013b

 polyspace-report-generator

1-31

polyspace-comments-import
(DOS/UNIX) Import review information from previous Polyspace analysis

Syntax
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder

Description
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder
imports review information from a results file in prevResultsFolder to currentResultsFolder.
The review information includes the severity, status and additional notes that you assign to a result.
Besides importing the review information, the command also shows the number of results where
review information could not be imported either because the result changed or the result already had
new review information.

Examples

Import Review Information from Previous Polyspace Results

Run Bug Finder on a sample file and add some review information. Then, run Bug Finder a second
time and import the information from the previous run.

Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a writable folder. Open a command window and navigate to the
folder (using cd). Run Bug Finder on the file and save results in the subfolder Run_1:

polyspace-bug-finder -sources numerical.c -results-dir Run_1/

Depending on the product installed, you can also run polyspace-code-prover, polyspace-bug-
finder-server or polyspace-code-prover-server.

Open the results file in the Run_1 subfolder:

polyspace Run_1/ps_results.psbf

Select a result. On the Result Details window, select a Severity and Status and add some notes.
You will import this review information to results from a later analysis.

Run Bug Finder again, but save the results in a different subfolder Run_2:

polyspace-bug-finder -sources numerical.c -results-dir Run_2/

You can open the results file in Run_2 and see that there is no review information.

Import the review information from the results file in the Run_1 subfolder to the Run_2 subfolder:

polyspace-comments-import -diff-rte Run_1/ Run_2/

1 Commands

1-32

Open the results file in the Run_2 subfolder:

polyspace Run_2/ps_results.psbf

You see the review information imported from the results file in the Run_1 subfolder.

Input Arguments
prevResultsFolder — Folder containing previous Polyspace results with review
information
string

Path to a folder containing a Polyspace results file (.psbf file for Bug Finder results and .pscp file
for Code Prover results). The results are presumably from an earlier Polyspace analysis and contain
review information that will be imported to a later results file.
Example: "C:\Polyspace\Project_1_Run_25"

currentResultsFolder — Folder containing later Polyspace results
string

Path to a folder containing Polyspace results (.psbf file for Bug Finder results and .pscp file for
Code Prover results). The results are presumably from a later Polyspace analysis and have no review
information or review information for new results only. You want to import review information from
an earlier Polyspace analysis to these results.
Example: "C:\Polyspace\Project_1_Run_26"

See Also
-import-comments

Topics
“Import Review Information from Previous Polyspace Analysis”

Introduced in R2013b

 polyspace-comments-import

1-33

polyspaceroot
Get Polyspace installation folder

Syntax
polyspaceroot

Description
polyspaceroot returns the Polyspace installation folder.

Starting in R2019a, to run MATLAB® scripts for Polyspace analysis, you install MATLAB and
Polyspace in separate folders and link between them. After installation and linking, to access files in
the Polyspace installation folder from MATLAB, use this function. See also “Integrate Polyspace
Server Products with MATLAB and Simulink”.

Examples

Get Polyspace Installation Folder

To determine the Polyspace installation folder, use the polyspaceroot function.

polyspaceroot

C:\Program Files\Polyspace\R2019a

With the products, Polyspace Bug Finder Server or Polyspace Code Prover Server, the default
installation folder in Windows® is:

C:\Program Files\Polyspace Server\R2019a

Run Polyspace on Sample Files in Polyspace Installation Folder

To access sample files in the Polyspace installation folder, use the polyspaceroot function to get the
root of the installation folder. Append subfolders to the root folder path with the fullfile function.

Run Bug Finder on the file numerical.c in the subfolder polyspace\examples\cxx
\Bug_Finder_Example\sources of the Polyspace installation folder.

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};

1 Commands

1-34

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

See Also
polyspace.Project

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2019a

 polyspaceroot

1-35

polyspaceBugFinderServer
Run analysis with Polyspace Bug Finder Server using MATLAB scripts

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinderServer(optsObject)

polyspaceBugFinderServer('-help')

polyspaceBugFinderServer('-sources',sourceFiles)
polyspaceBugFinderServer('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinderServer(optsObject) runs an analysis on the Polyspace options object in
MATLAB.

polyspaceBugFinderServer('-help') displays options that can be supplied to the
polyspaceBugFinderServer command to run an analysis with Polyspace Bug Finder Server.

polyspaceBugFinderServer('-sources',sourceFiles) runs an analysis with Polyspace Bug
Finder Server on the source files specified in sourceFiles.

polyspaceBugFinderServer('-sources',sourceFiles,Name,Value) runs an analysis with
Polyspace Bug Finder Server on the source files with additional options specified by one or more
Name,Value pair arguments.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Examples

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line. For this
example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {'C:\Polyspace_Sources\source.c'};

1 Commands

1-36

opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis with Polyspace Bug Finder Server.

polyspaceBugFinderServer(opts);

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinderServer('-sources','C:\Polyspace_Sources\source.c', ...
 '-I','C:\Polyspace_Includes', ...
 '-results-dir','C:\Polyspace_Results')

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can customize as
many additional options as you want by changing properties in an options object or by using Name-
Value pairs. Here you specify checking of MISRA C® 2012 coding rules.

Create variables to save the source file path and results folder path. You can use these variables for
either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingStandards.MisraC3Subset = 'all';
opts.CodingStandards.EnableMisraC3 = true;
polyspaceBugFinderServer(opts);

Analyze coding rules with DOS/UNIX options.

 polyspaceBugFinderServer

1-37

polyspaceBugFinderServer('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes polyspace.Options or
polyspace.Project.
Example: opts

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code is intended
for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Analysis Options”.

See Also
polyspace.Project

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2019a

1 Commands

1-38

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system. You can run an analysis on a Polyspace project
only in the user interface of the Polyspace desktop products.

polyspaceConfigure -option value buildCommand traces your build system and uses -
option value to modify the default operation of polyspaceConfigure. Specify the modifiers
before buildCommand, otherwise they are considered as options in the build command itself.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code. The example creates a Polyspace project that can be
opened only in the user interface of the Polyspace desktop products.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project. The example creates a
Polyspace project that can be opened only in the user interface of the Polyspace desktop products.

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

polyspaceConfigure -no-project make -B;

 polyspaceConfigure

1-39

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polysapce-configure,
enclose them in double quotes.For more information on the supported syntax for glob patterns, see
“Create Polyspace Analysis Configuration from Build Command”.

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use a build command such as make
targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project. Instead you
create an options file that you can use to run Polyspace analysis from the command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinderServer -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

1 Commands

1-40

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using polyspace-
bug-finder-server.

-allow-build-error None Option to create a Polyspace project even if an error
occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

 polyspaceConfigure

1-41

Option Argument Description
-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

-debug None Option to store debug information for use by
MathWorks technical support.

This option has been superseded by the option -
easy-debug.

-easy-debug Path Option to store debug information for use by
MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU
and Visual C++ compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

1 Commands

1-42

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Create Polyspace Analysis
Configuration from Build Command”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without creating a
Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

 polyspaceConfigure

1-43

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Create Polyspace Analysis Configuration
from AUTOSAR Specifications” (Polyspace Code
Prover Server).

• Running Polyspace in Eclipse.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

1 Commands

1-44

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

 polyspaceConfigure

1-45

Option Argument Description
-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

1 Commands

1-46

See Also
Topics
“Create Polyspace Analysis Configuration from Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

 polyspaceConfigure

1-47

polyspace_report
Generate reports from Polyspace analysis results

Syntax
polyspace_report('-template', template, '-results-dir', resultsFolder,
options)
polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options)
polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options)

Description
polyspace_report('-template', template, '-results-dir', resultsFolder,
options) generates a report using a predefined template specified by template. By default, the
report is named after the results file in the folder resultsFolder and saved in the Polyspace-Doc
subfolder. You can change the default behavior using additional options.

polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options) exports the list of Polyspace results to a tab-delimited text file.

polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options) exports the list of global variables to a tab-delimited text file.

Note

• Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations.
See “Integrate Polyspace Server Products with MATLAB and Simulink”.

• You need MATLAB Report Generator™ to use this function.

Examples

Generate PDF Report from Results

Generate a PDF report from sample Polyspace Code Prover results.

template = fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',...
 'Developer.rpt');
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example',...
 'Module_1','CP_Result');
polyspace_report('-template', template, '-results-dir', resPath, '-format', 'PDF');

Input Arguments
template — Path to report template file
character vector

1 Commands

1-48

Path to report template file, specified as a character vector. To generate multiple reports, specify a
comma-separated list of report template paths in the character vector (do not put a space after the
commas). The templates are available in polyspaceroot\toolbox\polyspace\psrptgen
\templates\ as .rpt files. Here, polyspaceroot is the Polyspace installation folder. For more
information on the available templates, see Bug Finder and Code Prover report (-report-
template).
Example: fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',
'Developer.rpt');

resultsFolder — Folder containing analysis results
character vector

Folder containing analysis results, specified as a character vector. The folder must contain a .psbf
file containing Polyspace Bug Finder results or a .pscp file containing Polyspace Code Prover results.

To generate reports for multiple analyses, specify a comma-separated list of folder paths (do not put a
space after the commas).
Example: 'C:\Polyspace_Workspace\My_project\Module_1\results'

options — Options for generating report
character vector

Options to control report generation, for instance, output format and output name.

Specify each option as a character vector, followed by the option value as a separate character vector.
For instance, you can specify the PDF format by using the syntax polyspace_report(..., '-
format','PDF').

Option Value Description
'-format' 'PDF', 'HTML' or 'WORD' File format of the report that

you generate. By default, the
command generates a Word
document.

To generate reports in multiple
formats, specify a comma-
separated list of formats. (Do
not put a space after the
commas). For instance,
polyspace_report(..., '-
format', 'PDF,HTML').

This option is not compatible
with -generate-variable-
access-file and -generate-
results-list-file.

'-set-language-english' Generate the report in English.
Use this option if your display
option is set to another
language.

 polyspace_report

1-49

Option Value Description
'-output-name' Report name, for instance,

PolyspaceReport.
Name of the generated report or
folder name if you generate
multiple reports.

The full path to the report is
created by appending the name
to the current working folder. To
store the reports on a different
path, specify the full path as
value for this option.

See Also

Introduced in R2013b

1 Commands

1-50

polyspace.Project
Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object. To specify source
files and customize analysis options, use the Configuration property. To run the analysis, use the
run method. To read results after analysis, use the Results property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Creation
proj = polyspace.Project creates an object that you can use to configure and run a Polyspace
analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object. The object
has properties corresponding to the analysis options. For more information on those properties, see
polyspace.Project.Configuration properties.

You can retain the default options or change them in one of these ways:

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options might not be
available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For instance, you
want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface of the Polyspace desktop products
(.psprj file).

 polyspace.Project

1-51

proj = polyspace.Project;
projectLocation = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then import
them to a polyspace.Project object. In the user interface, you can access help from features
such as the Compilation Assistant and get tooltip help on options.

• Obtain the options from a Simulink® model (applies only to Polyspace desktop products). Before
obtaining the options, generate code from the model.

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0
 rtwbuild(modelName);
end

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this property is
initially empty. The property is populated only after you execute the run method of the object.
Depending on the argument to the run method, 'bugFinder' or 'codeProver', the property is
implemented as a polyspace.BugFinderResults or polyspace.CodeProverResults object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resTable = proj.Results.getSummary('defects');

For more information, see getSummary or getSummary.
• getResults: Obtain the full results or a more readable format into a MATLAB table.

1 Commands

1-52

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resTable = proj.Results.getResults('readable');

For more information, see getResults or getResults.

Object Functions
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if the function does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

 polyspace.Project

1-53

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
defectsSummary = proj.Results.getSummary('defects');
misraSummary = proj.Results.getSummary('misraC2012');

See Also
Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2017b

1 Commands

1-54

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the Configuration
property of a polyspace.Project object. Do not create a polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files and
customize analysis options, change the object properties.

To analyze model-generated code (using the Polyspace desktop products), use
polyspace.ModelLinkOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Construction
opts = polyspace.Options creates an object whose properties correspond to options for running
a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a property
Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options that are
applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object from an
existing Polyspace project projectFile. You set the options in your project in the Polyspace user
interface and create the options object from that project for programmatically running the analysis.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines the
object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

 polyspace.Options class

1-55

If the file is not in the current folder, projectFile must include a full or relative path. To identify
the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The properties are
organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS/UNIX command-line name. For syntax details, see polyspace.Project.Configuration
properties.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties. In case you do not have write access to your current folder, a
temporary folder is being used for storing analysis results.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

results = polyspaceBugFinder(opts);

With the Polyspace Server products, you can use the functions polyspaceBugFinderServer or
polyspaceCodeProverServer.

Open the results in the Polyspace user interface of the desktop products.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug Finder
analysis.

1 Commands

1-56

Create object and customize properties.

sources=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in the Polyspace
interface.

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the results in the
Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use instead.

See Also
polyspace.Project | polyspaceBugFinderServer

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2017a

 polyspace.Options class

1-57

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Construction
defectsList = polyspace.DefectsOptions creates the defect options object defectsList.
You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their command-
line name. See “Short Names of Bug Finder Defect Checkers”.

By default, all defects are turned off. To turn on a defect, set the defect to true. For example:

defectsList = polyspace.DefectsOptions;
defectsList.FLOAT_ZERO_DIV = true;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Defects to Check

Customize the list of defects checked during a Polyspace Bug Finder analysis.

Create two objects: a polyspace.DefectsOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

defectsList = polyspace.DefectsOptions;
proj = polyspace.Project;

Enable the numerical defects.

defectsList.FLOAT_ZERO_DIV = true;
defectsList.INT_ZERO_DIV = true;
defectsList.FLOAT_ABSORPTION = true;

1 Commands

1-58

defectsList.BITWISE_NEG = true;
defectsList.FLOAT_CONV_OVFL = true;
defectsList.FLOAT_OVFL = true;
defectsList.INT_CONV_OVFL = true;
defectsList.INT_OVFL = true;
defectsList.FLOAT_STD_LIB = true;
defectsList.INT_STD_LIB = true;
defectsList.SHIFT_NEG = true;
defectsList.SHIFT_OVFL = true;
defectsList.SIGN_CHANGE = true;
defectsList.UINT_CONV_OVFL = true;
defectsList.UINT_OVFL = true;
defectsList.BAD_PLAIN_CHAR_USE = true;

Add the customized list of defects to the Configuration property of the polyspace.Project
object.

proj.Configuration.BugFinderAnalysis.CheckersList = defectsList;
proj.Configuration.BugFinderAnalysis.CheckersPreset = 'custom';

You can now use the polyspace.Project object to run the analysis.

See Also
polyspace.CodingRulesOptions | polyspace.Options | polyspace.Project

Topics
“Short Names of Bug Finder Defect Checkers”

Introduced in R2016b

 polyspace.DefectsOptions class

1-59

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules object
ruleList for the RuleSet coding rule set. Set the active rules in the coding rules object.

Input Arguments

RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf | certC | certCpp | iso17961 |
autosarCpp14

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

Properties
For each coding rule set, an object is created with all supported rules divided into sections. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

misraRules = polyspace.CodingRulesOptions('misraC');
misraRules.Section_20_Standard_libraries.rule_20_1 = false;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked in a Polyspace analysis. Since all rules are enabled by
default, you can create a custom subset by disabling some rules.

1 Commands

1-60

Create two objects: a polyspace.CodingRulesOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

misraRules = polyspace.CodingRulesOptions('misraC2012');
proj = polyspace.Project;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.Section_2_Unused_code.rule_2_1 = false;
misraRules.Section_2_Unused_code.rule_2_2 = false;
misraRules.Section_2_Unused_code.rule_2_3 = false;
misraRules.Section_2_Unused_code.rule_2_4 = false;
misraRules.Section_2_Unused_code.rule_2_5 = false;
misraRules.Section_2_Unused_code.rule_2_6 = false;
misraRules.Section_2_Unused_code.rule_2_7 = false;

Add the customized list of coding rules to the Configuration property of the polyspace.Project
object.

proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

You have to enable checkers selection by file because the Polyspace run uses an XML file underneath
to enable the coding rule checkers. The XML file is saved in a .settings subfolder of the results
folder.

You can now use the polyspace.Project object to run the analysis. For instance, you can enter:

proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
run(proj, 'bugfinder');

Create Coding Rules Object Using Rule Numbers to Enable

Suppose that you want to specify a subset of MISRA C: 2012 rules for the analysis. Instead of
enumerating rules that you want disabled, you can specify the rules that you want to keep enabled.
You can also specify the rule numbers only without the MISRA C: 2012 sections containing the rules.

Specify the rule numbers in a cell array to the createRulesObject function defined as follows.

function rulesObject = createRulesObject(rulesToEnable)

%% This function takes a cell array of MISRA C:2012 rules and returns
%% a polyspace.CodingRulesOptions object with the rules enabled.
%% Example input argument: {'2.7', '3.1'}

 rulesObject = polyspace.CodingRulesOptions('misraC2012');

 % Coding Standards documents have many sections. Loop over all
 % sections.
 ruleSections = properties(rulesObject);
 for i=1:length(ruleSections)
 sectionName = ruleSections{i};
 rulesInSection = properties(rulesObject.(sectionName));

 polyspace.CodingRulesOptions class

1-61

 % Loop over all rules in a section, enable or disable rule based
 % on input
 for j=1:length(rulesInSection)
 ruleNumberAsProperty = rulesInSection{j};
 ruleNumber = strrep(strrep(ruleNumberAsProperty,'rule_',''),'_','.');
 if(any(strcmp(rulesToEnable,ruleNumber)))
 rulesObject.(sectionName).(ruleNumberAsProperty)=1;
 else
 rulesObject.(sectionName).(ruleNumberAsProperty)=0;
 end
 end
 end
end

For instance, to enable rules 1.1 and 2.2, enter:

createRulesObject({'1.1','2.2'})

See Also
polyspace.Options | polyspace.Project

Introduced in R2016b

1 Commands

1-62

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
Create a custom target for a Polyspace analysis if your target processor does not match one of the
predefined targets,.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that you can
customize. To specify the sizes and alignment of data types, change the properties of the object. For
instance:

target = polyspace.GenericTargetOptions;
target.CharNumBits = 16;

Properties
For more details about any of the properties below, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with the DOS/
UNIX command-line option -align.
Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/UNIX command-
line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

 polyspace.GenericTargetOptions class

1-63

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the DOS/UNIX
command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/UNIX
command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX command-line
option -long-is-32bits.
Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the DOS/UNIX
command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/UNIX command-
line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/UNIX
command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

1 Commands

1-64

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples
Customize Generic Target Settings

Use a custom target for the Polyspace analysis.

Create two objects: a polyspace.GenericTargetOptions object for creating a custom target and
a polyspace.Project object for running the Polyspace analysis.

target = polyspace.GenericTargetOptions;
proj = polyspace.Project;

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

Add the custom target to the Configuration property of the polyspace.Project object.

proj.Configuration.TargetCompiler.Target = target;

You can now use the polyspace.Project object to run the analysis.

Generic target options | polyspace.CodingRulesOptions | polyspace.Options |
polyspace.Project

Introduced in R2016b

 polyspace.GenericTargetOptions class

1-65

polyspace.BugFinderResults class
Package: polyspace

Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object.

You can obtain a high-level overview or read each individual result, for example, each instance of a
defect.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB and Simulink”.

Construction
resObj = polyspace.BugFinderResults(resultsFolder) creates an object for reading a
specific set of Bug Finder results into MATLAB tables. Use the object methods to read the results.

proj = polyspace.Project creates a polyspace.Project object. The object has a property
Results. If you run a Bug Finder analysis, this property is a polyspace.BugFinderResults
object.

Input Arguments

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results file with
extension .psbf. Even if the results file resides in a subfolder of the specified folder, it cannot be
accessed.

If the folder is not in the current folder, resultsFolder must include a full or relative path.
Example: 'C:\Polyspace\Results\'

Methods
getSummary View number of defects organized by defect type
getResults Read Bug Finder results into MATLAB table

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

1 Commands

1-66

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace',...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

Alternatives
To read Code Prover results from MATLAB, use the class polyspace.CodeProverResults. See
polyspace.CodeProverResults.

Introduced in R2017a

 polyspace.BugFinderResults class

1-67

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an analysis option
on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This page only
shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug Finder or Code
Prover.

Note Some options might not be available depending on the language setting of the object. You can
set the source code language (Language) to 'C', 'CPP' or 'C-CPP' during object creation, but
cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a character vector.

For more information, see Command/script to apply after the end of the code
verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"'

1 Commands

1-68

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after which
Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an infinite loop,
specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-tester-loop-
max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange Tester
must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer, maximum of
100,000.

For more information, see Number of automatic tests (-automatic-orange-tester-
tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in Automatic
Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a positive integer,
maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

 polyspace.Project.Configuration Properties

1-69

List of custom checkers to activate specified by using the name of a polyspace.DefectsOptions
object or a cell array of defect acronyms. To use this custom list in your analysis, set
CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
'default' (default) | 'all' | 'CWE' | 'custom'

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: 'default', 'all',
'CWE',or 'custom'. To use 'custom', specify a value for the property
BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

ChecksUsingSystemInputValues — Activate stricter checks for system inputs
false (default) | true

This property affects Bug Finder analysis only.

Activate stricter checks that consider all possible value for:

• Global variables.
• Reads of volatile variables.
• Returns of stubbed functions.
• Inputs to functions specified with SystemInputsFrom.

The analysis considers all possible values for a subset of Numerical and Static memory defects.

This property is equivalent to the Run stricter checks considering all values of system inputs
check box in the Polyspace interface.

For more information, see Run stricter checks considering all values of system
inputs (-checks-using-system-input-values)

Example: opts.BugFinderAnalysis.ChecksUsingSystemInputValues = true

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables all defects.
If you want to disable defect checking but still get results, turn on coding rules checking or code
metric checking.

1 Commands

1-70

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

SystemInputsFrom — List of functions for which you run stricter checks
'auto' (default) | 'uncalled' | 'all' | 'custom'

This property affects Bug Finder analysis only.

Functions for which you want to run stricter checks that consider all possible values of the function
inputs. Specify the list of functions as 'auto', 'uncalled', 'all', or as a character array
beginning with custom= followed by a comma-separated list of function names.

To enable this option, set BugFinderAnalysis.ChecksUsingSystemInputValues = true.

For more information, see Consider inputs to these functions (-system-inputs-from)
Example: opts.BugFinderAnalysis.SystemInputsFrom = 'custom=foo,bar'

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-negative-
operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified as true or
false.

For more information, see Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

 polyspace.Project.Configuration Properties

1-71

CheckInfinite — Detect floating-point operations that result in infinities
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point values
'allow' (default) | 'warn-first' | 'warn-all' | 'forbid'

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as true or false.

For more information, see Detect stack pointer dereference outside scope (-detect-
pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

1 Commands

1-72

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified as true or
false.

For more information, see Permissive function pointer calls (-permissive-function-
pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
'forbid' (default) | 'allow' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an overflow
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for signed integer (-signed-integer-
overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or false.

For more information, see Allow incomplete or partial allocation of structures (-
size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
'none' (default) | 'never-called' | 'called-from-unreachable' | 'all'

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point function,
specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

 polyspace.Project.Configuration Properties

1-73

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
'allow' (default) | 'forbid' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following an overflow,
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for unsigned integer (-unsigned-integer-
overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
'all' (default) | 'none' | 'custom=class1[,class2,...]'

This property affects Code Prover analysis only.

Classes that you want to verify, specified as 'all', 'none', or as a character array beginning with
custom= followed by a comma-separated list of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'custom=myClass1,myClass2'

ClassAnalyzerCalls — Class methods that you want to verify
'unused' (default) | 'all' | 'all-public' | 'inherited-all' | 'inherited-all-public' |
'unused-public' | 'inherited-unused' | 'inherited-unused-public' |
'custom=method1[,method2,...]'

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as a character array
beginning with custom= followed by a comma-separated list of method names.

For more information, see Functions to call within the specified classes (-class-
analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

1 Commands

1-74

Use main function provided in application, specified as true or false. If you set this property to false,
the analysis generates a main function, if it is not present in the source files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to call ahead
of other functions
cell array of function names

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as a cell array
of function names.

For more information, see Initialization functions (-functions-called-before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
'_tmain' (default) | 'wmain' | '_tWinMain' | 'wWinMain' | 'WinMain' | 'DllMain'

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main extensions.

For more information, see Main entry point (-main).
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after the
initialization functions
'unused' (default) | 'none' | 'all' | 'custom=function1[,function2,...]'

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions, specified as
'unused', 'all', 'none', or as a character array beginning with custom= followed by a comma-
separated list of function names.

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

 polyspace.Project.Configuration Properties

1-75

MainGeneratorWriteVariables — Global variables that you want the generated main to
initialize
'uninit' (C++ default) | 'public' (C default) | 'none' | 'all' |
'custom=variable1[,variable2,...]'

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the predefined
sets, or as a character array beginning with custom= followed by a comma-separated list of variable
names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables = 'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class members
false (default) | true

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-constructors-init-
check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

UnitByUnitCommonSource — Files that you want to include with each source file during a
file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification, specified as a cell
array of file paths.

For more information, see Common source files (-unit-by-unit-common-source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

1 Commands

1-76

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
'OBL-rules' (default) | 'OBL-REC-rules' | 'single-unit-rules' | 'system-decidable-
rules' | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions
object | 'from-file'

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be applied,
specified as a cell array of character vectors. This property affects only MISRA C:2004 or MISRA AC
AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas = {'pragma_01','pragma_02'}
Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
'all' (default) | 'required' | 'automated' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

 polyspace.Project.Configuration Properties

1-77

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a cell array of
character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes = {'boolean1_t','boolean2_t'}
Data Types: cell

CertC — Set of CERT® C rules and recommendations to check
'all' (default) | 'publish-2016' | 'all-rules' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property and then use
the EnableCheckersSelectionByFile and CheckersSelectionByFile property to specify
the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
'all' (default) | polyspace.CodingRulesOptions object | 'from-file'

1 Commands

1-78

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as a .xml file.
You can, in the same file, define a custom set of checkers for each of the coding standards that
Polyspace supports. To create a file that defines a custom selection of coding standard checkers, in
the Polyspace interface, select a coding standard on the Coding Standards & Code Metrics node of
the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\ps_settings
\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off, Polyspace
does not calculate code metrics even if you upload your results to Polyspace Metrics.

For more information about the code metrics, see Calculate code metrics (-code-metrics).

If you assign a coding rules options object to this property, an XML file gets created automatically
with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are checked, use
AcAgcSubset.

 polyspace.Project.Configuration Properties

1-79

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-misra-ac-
agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are checked, use
AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++ 14
security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which rules are
checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks (-cert-
c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked, use
CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security checks (-
cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'

1 Commands

1-80

• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO®/IEC TS 17961 rules, specified as true or false. To customize which rules are checked, use
Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security checks (-
iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked, use
JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are checked, use
MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

 polyspace.Project.Configuration Properties

1-81

Check MISRA C:2012 rules, specified as true or false. To customize which rules are checked, use
MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are checked, use
MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++ rules (-
misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
'all' (default) | 'decidable' | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check ISO-17961 security checks (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
'shall-rules' (default) | 'shall-will-rules' | 'all-rules' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

1 Commands

1-82

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or false.

For more information, see Use generated code requirements (-misra3-agc-mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
'mandatory-required' (default) | 'mandatory' | 'single-unit-rules' | 'system-
decidable-rules' | 'all' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
'required-rules' (default) | 'single-unit-rules' | 'system-decidable-rules' | 'all-
rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions object | 'from-
file'

Subset of MISRA C:2004 rules to check, specified by:

 polyspace.Project.Configuration Properties

1-83

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
'required-rules' (default) | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

1 Commands

1-84

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:\includes
**'. The notation follows the syntax of the dir function.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:\project1\common
\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character vector of the
command to run.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand = [pwd,'/
replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts
\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

 polyspace.Project.Configuration Properties

1-85

For more information, see Stop analysis if a file does not compile (-stop-if-
compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return values
of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions specified by the
path to an XML constraint file. For more information about the constraint file, see “Specify External
Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
'include-folders' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you do not want analysis results, specified by 'include-folders', 'all-headers',
or a character array beginning with custom= followed by a comma-separated list of file or folder
names.

Use this option with InputsStubbing.GenerateResultsFor. For more information, see Do not
generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:\project
\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
'source-headers' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you want analysis results, specified by 'source-headers', 'all-headers', or a
character array beginning with custom= followed by a comma-separated list of file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more information, see
Generate results for sources and (-generate-results-for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

1 Commands

1-86

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library, specified as
true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup tables. By
replacing the functions with stubs, the analysis assumes more precise return values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables (-stub-
embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of macros and
definitions. Specify the macro as Macro=Value. If you want Polyspace to ignore the macro, leave the
Value blank. A macro with no equal sign replaces all instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to undefine.

For more information, see Disabled preprocessor definitions (-U).

 polyspace.Project.Configuration Properties

1-87

Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace Metrics web
dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true or false. To
use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder = true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to Polyspace Metrics
web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as true or false.
To use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver = true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

1 Commands

1-88

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
'Word' (default) | 'HTML' | 'PDF'

Output format of generated report, specified as one of the report formats. To activate this option,
specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
'BugFinderSummary' (default) | 'BugFinder' | 'SecurityCWE' | 'CodeMetrics' |
'CodingStandards'

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
'Developer' (default) | 'CallHierarchy' | 'CodeMetrics' | 'CodingStandards' |
'DeveloperReview' | 'Developer_withGreenChecks' | 'Quality' | 'VariableAccess'

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report formats. To activate
this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).

 polyspace.Project.Configuration Properties

1-89

Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

1 Commands

1-90

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or false.

For more information, see Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration from
external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide. Configure
multitasking from ARXML files for an AUTOSAR project, or from OIL files for an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other manual,
multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell array of entry-
point function names. To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking configuration
'osek' (default) | 'autosar'

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you specify.
• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

 polyspace.Project.Configuration Properties

1-91

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
'auto' (default) | 'custom=folder1[,folder2,...]'

Specify the path to the OIL files the software parses to set up your multitasking configuration:

• In the mode specified with 'auto', the analysis uses OIL files in your project source and include
folders, but not their subfolders.

• In the mode specified with 'custom=folder1[,folder2,...]', the analysis uses the OIL files
at the specified path, and the path subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path, dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

1 Commands

1-92

Entry-point functions that cannot execute concurrently specified as a cell array of entry-point
function names. Each set of exclusive tasks is one cell array entry with functions separated by spaces.
To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally exclusive,
and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
'none' (default) | 'auto' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as none, auto,
or as a character array beginning with custom= followed by a list of comma-separated function
names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file names without
the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

1-93

Avoid certain verification approximations for code with fewer lines, specified as a positive integer
representing how sensitive the analysis is. Higher values can increase verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-path-
sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
'Software Safety Analysis level 2' (default) | 'Software Safety Analysis level 0' |
'Software Safety Analysis level 1' | 'Software Safety Analysis level 3' |
'Software Safety Analysis level 4' | 'Source Compliance Checking' | 'other'

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as a cell
array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating how many
levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-limiting).
Example: opts.Scaling.KLimiting = 3

1 Commands

1-94

TargetCompiler

Compiler — Compiler that builds your source code
'generic' (default) | 'gnu3.4' | 'gnu4.6' | 'gnu4.7' | 'gnu4.8' | 'gnu4.9' | 'gnu5.x' |
'gnu6.x' | 'gnu7.x' | 'clang3.x' | 'clang4.x' | 'clang5.x' | 'visual9.0' | 'visual10' |
'visual11.0' | 'visual12.0' | 'visual14.0' | 'visual15.x' | 'keil' | 'iar' | 'armcc' |
'armclang' | 'codewarrior' | 'diab' | 'greenhills' | 'iar-ew' | 'renesas' | 'tasking' |
'ti'

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++11 standard version followed in code
'defined-by-compiler' (default) | 'cpp03' | 'cpp11' | 'cpp14'

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
'defined-by-compiler' (default) | 'c90' | 'c99' | 'c11'

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
'defined-by-compiler' (default) | 'auto-signed-first' | 'auto-unsigned-first'

Base type representation of enum, specified by an allowed base-type set. For more information about
the different values, see Enum type definition (-enum-type-definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

 polyspace.Project.Configuration Properties

1-95

Language — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

This property is read-only.

Language of the analysis, specified during the object construction. This value changes which
properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
'Arithmetical' (default) | 'Logical'

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For more
information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For more
information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
'defined-by-compiler' (default) | '1' | '2' | '4' | '8' | '16'

Default structure packing alignment, specified as 'defined-by-compiler', '1', '2', '4', '8', or
'16'. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax sfr_name=size_in_bits. For
more information, see Sfr type support (-sfr-types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
'defined-by-compiler' (default) | 'unsigned-int' | 'unsigned-long' | 'unsigned-long-
long'

Underlying type of size_t, specified as 'defined-by-compiler', 'unsigned-int',
'unsigned-long', or 'unsigned-long-long'. See Management of size_t (-size-t-type-
is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
'i386' (default) | 'arm' | 'arm64' | 'avr' | 'c-167' | 'c166' | 'c18' | 'c28x' | 'c6000' |
'coldfire' | 'hc08' | 'hc12' | 'm68k' | 'mcore' | 'mips' | 'mpc5xx' | 'msp430' | 'necv850'

1 Commands

1-96

| 'powerpc' | 'powerpc64' | 'rh850' | 'rl78' | 'rx' | 's12z' | 'sharc21x61' | 'sparc' |
'superh' | 'tms320c3x' | 'tricore' | 'x86_64' | generic target object

Set size of data types and endianness of processor, specified as one of the predefined target
processors or a generic target object.

For more information about the predefined processors, see Target processor type (-target).

For more information about creating a generic target, see polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
'defined-by-compiler' (default) | 'signed-short' | 'unsigned-short' | 'signed-int' |
'unsigned-int' | 'signed-long' | 'unsigned-long'

Underlying type of wchar_t, specified as 'defined-by-compiler', 'signed-short',
'unsigned-short', 'signed-int', 'unsigned-int', 'signed-long', or 'unsigned-long'.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields can
have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in code.

For more information, see Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields = true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL unless
constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull = true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic, specified as
to-nearest or all.

 polyspace.Project.Configuration Properties

1-97

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-types-in-
globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the results folder
of the previous analysis.

You can also point to a previous results folder to see only new results compared to the previous run.
See .

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example','Mod
ule_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

1 Commands

1-98

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in the current
folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See .
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To specify all
files in a folder and its subfolders, use folder path followed by **, for instance, 'C:\src**'. The
notation follows the syntax of the dir function. See also .

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/file2.c',
'project/src3/file3.c'}

Version — Project version number
'1.0' (default) | character array of a number

Version number of project, specified as a character array of a number. This option is useful if you
upload your results to Polyspace Metrics. If you increment version numbers each time that you
reanalyze your object, you can compare the results from two versions in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also
Topics
“Analysis Options”

Introduced in R2017a

 polyspace.Project.Configuration Properties

1-99

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo. The options
objects do not need to be the same type of options object. This method copies only properties that are
common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that object to
another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'gnu4.9';

Create another object and use copyTo to copy over options from the previous object.

1 Commands

1-100

opts2 = polyspace.Options();
opts1.copyTo(opts2);

See Also
generateProject | polyspace.Options

Introduced in R2016b

 copyTo

1-101

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called projectName from the
options specified in the polyspace.Options object opts. You can open a .psprj project in the
user interface of the Polyspace desktop products.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object convert into a psprj file, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of the psprj file.
Example: 'myProject'

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from an options
object.

Create a Bug Finder object and set properties.

sources = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

1 Commands

1-102

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce identical analysis
results. The only difference is that the psprj project can be rerun in the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

See Also
copyTo | polyspace.Options

Introduced in R2016b

 generateProject

1-103

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of a
polyspace.Options object to a MATLAB script. The script shows the values assigned to all the
properties of the object. You can run the script later to define the object in the MATLAB workspace
and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the script is
created in subfolder of the current working folder.
Example: 'runPolyspace.m'

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or 'append'. If you
specify 'append', the object properties are added to the end of an existing script. Otherwise, a new
script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

1 Commands

1-104

See Also
copyTo | generateProject | polyspace.Options

Introduced in R2017b

 toScript

1-105

run
Run a Polyspace analysis

Syntax
run(proj, product)

Description
status = run(proj, product) runs a Polyspace Bug Finder or Polyspace Code Prover analysis
using the configuration specified in the polyspace.Project object proj. The analysis results are
also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

Status of analysis. If the analysis fails, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a true status.

There can be many other reasons why the analysis fails. If the analysis fails, in your results folder,
check the log file. You can see the results folder using the Configuration property of the
polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

1 Commands

1-106

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

 run

1-107

getSummary
Class: polyspace.BugFinderResults
Package: polyspace

View number of defects organized by defect type

Syntax
resObj.getSummary(resultsType)

Description
resSummary = resObj.getSummary(resultsType) returns the distribution of results of type
resultsType in a Bug Finder result set denoted by the polyspace.BugFinderResults object
resObj. For instance, if you choose to see defects, you can see how many defects of each type are
present in the result set, for instance, how many non-initialized variables or declaration mismatches.

Input Arguments
resultsType — Type of Bug Finder analysis result
'defects' (default) | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' | 'jsf' |
'metrics' | 'customRules'

Type of result, specified as a character vector.

Entry Meaning
'defects' Bugs or defects.
'misraC' MISRA C:2004 rules.
'misraCAGC' MISRA C:2004 rules for generated code.
'misraCPP' MISRA® C++ rules.
'misraC2012' MISRA C:2012 rules.
'jsf' JSF® C++ rules.
'metrics' Code complexity metrics.
'customRules' Custom rules enforcing naming conventions for

identifiers.

Output Arguments
resSummary — Distribution of defects by defect type
table

Distribution of defects by defect type, specified as a table. For instance, an extract of the table looks
like this:

1 Commands

1-108

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized variable High 2

The table above shows that the result set contains two data races, one deadlock and two non-
initialized variables.

For more information on MATLAB tables, see “Tables” (MATLAB).

Examples
Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary('defects');
resTable = resObj.getResults();

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See Also
polyspace.BugFinderResults

 getSummary

1-109

Topics
“Defects” (Polyspace Bug Finder Access)
“Bug Finder Defect Groups”

Introduced in R2017a

1 Commands

1-110

getResults
Class: polyspace.BugFinderResults
Package: polyspace

Read Bug Finder results into MATLAB table

Syntax
resObj.getResults(content)

Description
resTable = resObj.getResults(content) returns a table showing all results in a Bug Finder
result set denoted by the polyspace.BugFinderResults object resObj. You can manipulate the
table to produce graphs and statistics about your results that you cannot obtain readily from the user
interface.

Input Arguments
content — Result information to include
'' (default) | 'readable'

Amount of information to be included for each result. If you specify '', all information is included. If
you specify 'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups (Polyspace Bug Finder Access), MISRA C:2012 groups (Polyspace Bug

Finder Access), etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

Output Arguments
resTable — Results of a Bug Finder analysis
table

Table showing all results from a single Bug Finder analysis. For each result, the table has information
such as file, family, and so on. If a particular information is not available for a result, the entry in the
table states <undefined>.

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

 getResults

1-111

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary ('defects');
resTable = resObj.getResults ('');

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

See Also
polyspace.BugFinderResults

Introduced in R2017a

1 Commands

1-112

Analysis Options

2

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options, choose this
option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-2 for ways in which the source code language can
be automatically determined.

Command line: Use the option -lang. See “Command-Line Information” on page 2-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the verification to C
language conventions. All files are interpreted as C files, regardless of their file extension.

CPP
If your project contains only C++ files, choose this setting. This value restricts the verification to
C++ language conventions. All files are interpreted as C++ files, regardless of their file
extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows for C and C
++ language conventions. .c files are interpreted as C files. Other file extensions are interpreted
as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some options change

depending on your language selection. For more information, see the individual analysis option
pages.

• If you create a Polyspace project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is determined
by the file extensions.

2 Analysis Options

2-2

For a project with both .c and .cpp files, the language option C-CPP is used. In the subsequent
analysis, each file is compiled based on the language standard determined by the file extensions.

Command-Line Information
Parameter: -lang
Value: c | cpp| c-cpp
Default: Based on file extensions
Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp"
Example: polyspace-bug-finder-server -lang c-cpp -sources "file1.c,file2.cpp"
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

 Source code language (-lang)

2-3

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-5 for other options that you must enable.

Command line: Use the option -c-version. See “Command-Line Information” on page 2-5.

Why Use This Option

Use this option so that Polyspace can allow features specific to a C standard version during
compilation. For instance, if you compile with GCC using the flag -ansi or -std=c90, specify c90
for this option. If you are not sure of the language standard, specify defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is defined in the
C99 standard but unknown in prior standards such as C90. If the Polyspace compilation follows the
C90 standard, you can see compilation errors.

Some MISRA C rules are different based on whether you use the C90 or C99 standard. For instance,
MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and name space shall be
distinct. If you use the C90 standard, different identifiers that have the same first 31 characters
violate this rule. If you use the C99 standard, the number of characters increase to 63.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

2 Analysis Options

2-4

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses the hidden option -options-for-
sources to associate different standards with different files.

Command-Line Information
Parameter: -c-version
Value: defined-by-compiler | c90 | c99 | c11
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
c-version c90
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-c-version c90
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -c-version c90

See Also
C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“Prepare Scripts for Polyspace Analysis”
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

2-5

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-7 for other options that you must enable.

Command line: Use the option -cpp-version. See “Command-Line Information” on page 2-7.

Why Use This Option

Use this option so that Polyspace can allow features from a specific version of the C++ language
standard during compilation. For instance, if you compile with GCC using the flag -std=c++11 or -
std=gnu++11, specify cpp11 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in the C++11
standard but unrecognized in prior standards such as C++03. If the Polyspace compilation uses the C
++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros specific to
the standard using compiler settings that you typically use. For instance, to check for C++11-specific
features, compile this code. The code contains a C++11-specific keyword nullptr. If the macro
__cplusplus is not 201103L (indicating C++11), this keyword is used and causes a compilation
error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else
 void* ptr = nullptr;
#endif

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

2 Analysis Options

2-6

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses multiple standards for compiling the
files. The analysis uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
cpp-version cpp11
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-cpp-version cpp11
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11

See Also
C standard version (-c-version) | Source code language (-lang)

Topics
“Prepare Scripts for Polyspace Analysis”
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

 C++ standard version (-cpp-version)

2-7

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded applications. See the
list below. For these compilers, you can run analysis simply by specifying your compiler and target
processor. For other compilers, specify generic as compiler name. If you face compilation errors,
explicitly define compiler-specific extensions to work around the errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -compiler. See “Command-Line Information” on page 2-14.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++ Standard, but comes
from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and bit. If you do
not specify your compiler, these additional keywords can cause compilation errors during Polyspace
analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

• You cannot specify compiler flags directly in the Polyspace analysis. To emulate your compiler
flags, trace your build command or manually specify equivalent Polyspace analysis options. See
“Specify Target Environment and Compiler Behavior”.

• Code Prover has a linking policy that is stricter than regular compilers. For instance, if your
compiler allows declaration mismatches with specific compiler options, you cannot emulate this
linking policy in Code Prover. See “Troubleshoot Compilation and Linking Errors” (Polyspace Code
Prover Server).

Settings
Default: generic

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)
• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of compiler.

2 Analysis Options

2-8

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-12.
gnu4.8

Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-12.
gnu4.9

Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-12.
gnu5.x

Analysis allows GCC 5.1, 5.2, 5.3, and 5.4 syntax.

If you select gnu5.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-12.
gnu6.x

Analysis allows GCC 6.1, 6.2, and 6.3 syntax.

If you select gnu6.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-12.
gnu7.x

Analysis allows GCC 7.1, 7.2, and 7.3 syntax.

If you select gnu7.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-12.
clang3.x

Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.
clang4.x

Analysis allows Clang 4.0.0, and 4.0.1 syntax.
clang5.x

Analysis allows Clang 5.0.0, and 5.0.1 syntax.

 Compiler (-compiler)

2-9

visual9.0
Analysis allows Microsoft® Visual C++ 2008 syntax.

visual10.0
Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual Studio®update 2).

This option implicitly enables the option -no-stl-stubs.
visual15.x

Analysis allows Microsoft Visual C++ 2017 syntax (supports Microsoft Visual Studio versions 15.0
up to 15.7).

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products from ARM
(www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from IAR
Systems (www.iar.com).

armcc
Analysis allows non-ANSI C syntax and semantics associated with the ARM® v5 compiler.

If you select armcc, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the ARM v5 compiler.
See ARM v5 Compiler (-compiler armcc).

armclang
Analysis allows non-ANSI C syntax and semantics associated with the ARM v6 compiler.

If you select armclang, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the ARM v6
compiler. See ARM v6 Compiler (-compiler armclang).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP CodeWarrior®

compiler.

2 Analysis Options

2-10

https://www.keil.com/
https://www.iar.com/

If you select codewarrior, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the NXP
CodeWarrior compiler. See NXP CodeWarrior Compiler (-compiler codewarrior).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the Cosmic compiler.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Comic compiler.
See Cosmic Compiler (-compiler cosmic).

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River® Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the NXP CodeWarrior
compiler. See Diab Compiler (-compiler diab).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills® compiler.

If you select greenhills, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for a Green Hills
compiler. See Green Hills Compiler (-compiler greenhills).

iar-ew
Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded Workbench
compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the IAR Embedded
Workbench compiler. See IAR Embedded Workbench Compiler (-compiler iar-ew).

microchip
Analysis allows non-ANSI C syntax and semantics associated with the MPLAB XC8 C compiler.

If you select microchip, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the MPLAB
XC8 C compiler. See MPLAB XC8 C Compiler (-compiler microchip).

renesas
Analysis allows non-ANSI C syntax and semantics associated with the Renesas® compiler.

If you select renesas, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Renesas compiler.
See Renesas Compiler (-compiler renesas).

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the TASKING
compiler. See TASKING Compiler (-compiler tasking).

ti
Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™compiler.

 Compiler (-compiler)

2-11

If you select ti, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Texas Instruments
compiler. See Texas Instruments Compiler (-compiler ti).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the compiler used in the
Cosmic software development tools.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Cosmic compiler.

Tips
• Your compiler specification determines the values of many compiler-specific macros. In case you

want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

• If you use a Visual Studio compiler, you must use a Target processor type (-target)
option that sets long long to 64 bits. Compatible targets include: i386, sparc, m68k, powerpc,
tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with long long set to 64 (-long-long-
is-64bits at the command line).

• If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF coding rules that require
conforming to the ISO standard. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

• GNU compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Binary operations with vector types where one operand uses the shorthand notation for
uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for {2,2,2,2}.

typedef int v4si __attribute__ ((vector_size (16)));
v4si res, a = {1,2,3,4};

res = 2 + a; /* means {2,2,2,2} + a */

2 Analysis Options

2-12

• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S is directly
initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

You see a warning during analysis and a red check in the results when you dereference, for
instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-bit data
types, but Code Prover shows a compilation error if you use such a data type, for instance, the
GCC extension __float128.

• GNU compilers version 7.x:

• Type names _FloatN and _FloatNx are not semantically supported. The analysis treats them
as type float, double, or long double.

• Constants of type _FloatN or _FloatNx with suffixes fN, FN, or fNx, such as 1.2f123 or
2.3F64x are not supported.

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for certain
types of data-parallel hardware on specific targets. You typically use the restrict keyword to
enable this feature.

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates that the
optimizer must assume the condition to be henceforth true. Code Prover cannot reconcile this
contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

 Compiler (-compiler)

2-13

• Managed Extensions for C++ (required for the .NET Framework), or its successor, C++/CLI (C
++ modified for Common Language Infrastructure)

• __declspec keyword with attributes other than noreturn, nothrow, selectany or thread.

Command-Line Information
Parameter: -compiler
Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 | visual10.0 | visual11.0
| visual12.0 | visual14.0 | visual15.x | keil | iar | armcc | armclang |
codewarrior | cosmic | diab | greenhills | iar-ew | microchip |renesas |
tasking | ti
Default: generic
Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
-compiler gnu4.6
Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Target
processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Troubleshoot Compilation Errors”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2 Analysis Options

2-14

Target processor type (-target)
Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness of the target
machine. You can analyze code intended for an unlisted processor type by using one of the other
processor types, if they share common data properties.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that compiler. For
these compilers, you also cannot see the data type sizes in the user interface. See the links in the
table below for the data type sizes.

Command line: Use the option -target. See “Command-Line Information” on page 2-17.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored to the data
type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386 compared
to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace analysis, but deploy your
code to the i386 processor, your Polyspace results are not always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or unsigned.
To determine which signedness to specify, compile this code using the compiler settings that you
typically use:

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC compiler, the code
compiles with the -fsigned-char flag and fails to compile with the -funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For some targets,
you can modify the default size by clicking the Edit button to the right of the Target processor type
drop-down list. The optional values for those targets are shown in [brackets] in the table.

 Target processor type (-target)

2-15

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
necv850 8 16 32 32 32 32 32 64 32 signed Little 32

[16, 8]
hc08c 8 16 16

[32]
32 32 32 32 [64] 32 [64] 16d unsigned Big 32

[16]
hc12 8 16 16

[32]
32 32 32 32 [64] 32 [64] 326 signed Big 32

[16]
mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32

[16]
c18 8 16 16 32

[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16, 8]

Targets for
ARM v5
compiler

See ARM v5 Compiler (-compiler armcc).

Targets for
ARM v6
compiler

See ARM v6 Compiler (-compiler armclang).

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Cosmic
compiler

See Cosmic Compiler (-compiler cosmic).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

2 Analysis Options

2-16

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
MPLAB XC8 C
compiler

See MPLAB XC8 C Compiler (-compiler microchip)

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Texas
Instruments
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the same as the size
listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common compilers.
• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double, following the
specification of Visual C++ compilers.

b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken into account

by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more generic targets. For

more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same characteristics, or create
an mcpu generic target processor. See Generic target options.

You can also create a custom target by explicitly stating sizes of fundamental types and so on with the
option -custom-target.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61 | necv850
| hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386
Example (Bug Finder): polyspace-bug-finder -target m68k
Example (Code Prover): polyspace-code-prover -target m68k

 Target processor type (-target)

2-17

Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line options. See the
section Command-Line Options in Generic target options.

See Also
Polyspace Analysis Options
-custom-target

Polyspace Results
Higher Estimate of Local Variable Size | Lower Estimate of Local Variable Size

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-18

ARM v5 Compiler (-compiler armcc)
Specify ARM v5 compiler

Description
Specify armcc for the Compiler (-compiler) option if you compile your code with a ARM v5
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a ARM v5 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armcc -target
Value: arm
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm
Example (Code Prover): polyspace-code-prover -compiler armcc -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc -target
arm
Example (Code Prover Server): polyspace-code-prover-server -compiler armcc -
target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

 ARM v5 Compiler (-compiler armcc)

2-19

ARM v6 Compiler (-compiler armclang)
Specify ARM v6 compiler

Description
Specify armclang for the Compiler (-compiler) option if you compile your code with a ARM v6
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the user interface
of the Polyspace desktop products, you see only the processors allowed for a ARM v6 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armclang -target
Value: arm | arm64
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armclang -target arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armclang -
target arm64
Example (Code Prover Server): polyspace-code-prover-server -compiler armclang -
target arm64

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

2 Analysis Options

2-20

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a NXP
CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a NXP
CodeWarrior compiler. Your choice of target processor determines the size of fundamental data types,
the endianness of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -target
powerpc
Example (Bug Finder Server): polyspace-bug-finder-server -compiler codewarrior -
target powerpc
Example (Code Prover Server): polyspace-code-prover-server -compiler codewarrior
-target powerpc

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 NXP CodeWarrior Compiler (-compiler codewarrior)

2-21

Introduced in R2018a

2 Analysis Options

2-22

Cosmic Compiler (-compiler cosmic)
Specify Cosmic compiler

Description
Specify cosmic for the Compiler (-compiler) option if you compile your code with a Cosmic
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select cosmic for Compiler, in the user interface,
you see only the processors allowed for a Cosmic compiler. Your choice of target processor
determines the size of fundamental data types, the endianness of the target machine, and certain
keyword definitions.

If you specify the cosmic compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler cosmic -target
Value: s12z
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler cosmic -target s12z
Example (Code Prover): polyspace-code-prover -compiler cosmic -target s12z
Example (Bug Finder Server): polyspace-bug-finder-server -compiler cosmic -target
s12z
Example (Code Prover Server): polyspace-code-prover-server -compiler cosmic -
target s12z

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019b

 Cosmic Compiler (-compiler cosmic)

2-23

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River Diab
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for the Diab compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the target machine
and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh |
tricore
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler diab -target tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab -target
tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler diab -target
tricore

See Also
Compiler (-compiler) | Target processor type (-target)

2 Analysis Options

2-24

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

 Diab Compiler (-compiler diab)

2-25

Green Hills Compiler (-compiler greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a Green Hills
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a Green Hills
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• If you encounter errors during a Polyspace analysis, see “Errors Related to Green Hills Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green Hills

compiler is configured for native Windows development, you can see compilation errors or
incorrect analysis results with Code Prover. Contact Technical Support.

For instance, Green Hills compilers consider a size of 12 bytes for long double for embedded
targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by default.

• If you create a Polyspace project from a build command that uses a Green Hills compiler, the
compiler options -filetype and -os_dir are not implemented in the project. To emulate the -
os_dir option, you can explicitly add the path argument of the option as an include folder to your
Polyspace project.

Command-Line Information
Parameter: -compiler greenhills -target
Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm | i386 |
x86_64
Default: powerpc

2 Analysis Options

2-26

Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler greenhills -
target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler greenhills -
target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

 Green Hills Compiler (-compiler greenhills)

2-27

IAR Embedded Workbench Compiler (-compiler
iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR Embedded
Workbench compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a IAR Embedded Workbench
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the MATLAB
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | rl78
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target rl78
Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-ew -target
rl78
Example (Code Prover Server): polyspace-code-prover-server -compiler iar-ew -
target rl78

2 Analysis Options

2-28

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 IAR Embedded Workbench Compiler (-compiler iar-ew)

2-29

MPLAB XC8 C Compiler (-compiler microchip)
Specify MPLAB XC8 C compiler

Description
Specify microchip for the Compiler (-compiler) option if you compile your code with a MPLAB
XC8 C compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not
part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select microchip for Compiler, in the user
interface, you see only the processors allowed for a MPLAB XC8 C compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target machine, and
certain keyword definitions.

If you specify the microchip compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tip
Polyspace does not support the Atmel families of processors, such as AVR, TinyAVR, MegaAVR,
XMEGA, and SAM32.

Command-Line Information
Parameter: -compiler microchip -target
Value: pic
Default: pic
Example (Bug Finder): polyspace-bug-finder -compiler microchip -target pic
Example (Code Prover): polyspace-code-prover -compiler microchip -target pic
Example (Bug Finder Server): polyspace-bug-finder-server -compiler microchip -
target pic
Example (Code Prover Server): polyspace-code-prover-server -compiler microchip -
target pic

See Also
Compiler (-compiler) | Target processor type (-target)

2 Analysis Options

2-30

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2020a

 MPLAB XC8 C Compiler (-compiler microchip)

2-31

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a Renesas
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a Renesas compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx
Default: rl78
Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler renesas -
target rx
Example (Code Prover Server): polyspace-code-prover-server -compiler renesas -
target rx

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

2 Analysis Options

2-32

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the Altium® TASKING
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for the TASKING compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the target:

• TriCore: 6.0 and older versions
• C166: 4.0 and older versions
• ARM: 5.2 and older versions
• RH850: 2.2 and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options in your
project:

• Disabled preprocessor definitions (-U): Undefine the macro __CPU_TC1793B__.
• Preprocessor definitions (-D): Define the macro __CPU__. Enter __CPU__=xxx,

where xxx is the name of your CPU.

 TASKING Compiler (-compiler tasking)

2-33

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU. For instance,
enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command (makefile),
Polyspace can detect your CPU and add the required definitions in your project.

• For some errors related to TASKING compiler-specific constructs, see solutions in “Errors Related
to TASKING Compiler”.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example (Bug Finder): polyspace-bug-finder -compiler tasking -target tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler tasking -
target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler tasking -
target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

2 Analysis Options

2-34

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas Instruments
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for a Texas Instruments compiler.
Your choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files. See “Provide
Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

Command-Line Information
Parameter: -compiler ti -target
Value: c28x | c6000 | arm | msp430
Default: c28x
Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -target
msp430
Example (Code Prover Server): polyspace-code-prover-server -compiler ti -target
msp430

 Texas Instruments Compiler (-compiler ti)

2-35

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

2 Analysis Options

2-36

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
If a target processor is not directly supported by Polyspace, you can create your own target. You
specify the target mcpu representing a generic "Micro Controller/Processor Unit" and then explicitly
specify sizes of fundamental data types, endianness and other characteristics.

Settings
In the user interface of the Polyspace desktop products, the Generic target options dialog box
opens when you set the Target processor type to mcpu. The Target processor type option is
available on the Target & Compiler node in the Configuration pane.

Use the dialog box to specify the name of a new mcpu target, for example My_target. That new
target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]

 Generic target options

2-37

• long long [32]
• float [32]
• double [32]
• long double [32]
• pointer [16]
• alignment [32]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the visual* options.

Command-Line Options
When using the command line, use -target mcpu along with these target specification options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are Less
Significant byte First
(LSF). For example:
i386.

Specifies that the less
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0xFF)
and the most
significant byte (0x00)
at the second byte.

mcpu polyspace-bug-finder-server -
lang c -target mcpu -little-
endian

2 Analysis Options

2-38

Option Description Available
With

Example

-big-endian Big-endian
architectures are Most
Significant byte First
(MSF). For example:
SPARC, m68k.

Specifies that the most
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0x00)
and the less significant
byte (0xFF) at the
second byte.

mcpu polyspace-bug-finder-server -
target mcpu -big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign of
char.

signed: Specifies that
char is signed,
overriding target’s
default.

unsigned: Specifies
that char is unsigned,
overriding target’s
default.

All targets polyspace-bug-finder-server -
default-sign-of-char unsigned
-target mcpu

-char-is-16bits char defined as 16 bits
and all objects have a
minimum alignment of
16 bits

Incompatible with -
short-is-8bits and
-align 8

mcpu polyspace-bug-finder-server -
target mcpu -char-is-16bits

-short-is-8bits Define short as 8 bits,
regardless of sign

mcpu polyspace-bug-finder-server -
target mcpu -short-is-8bits

-int-is-32bits Define int as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

mcpu, hc08,
hc12, mpc5xx

polyspace-bug-finder-server -
target mcpu -int-is-32bits

-long-is-32bits Define long as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

If your project sets int
to 64 bits, you cannot
use this option.

All targets polyspace-bug-finder-server -
target mcpu -long-is-32bits

 Generic target options

2-39

Option Description Available
With

Example

-long-long-is-64bits Define long long as
64 bits, regardless of
sign. Alignment is also
set to 64 bits.

mcpu polyspace-bug-finder-server -
target mcpu -long-long-
is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of sign.

mcpu,
sharc21x61,
hc08, hc12,
mpc5xx

polyspace-bug-finder-server -
target mcpu -double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of sign.

c18 polyspace-bug-finder-server -
target c18 -pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of sign.

mcpu polyspace-bug-finder-server -
target mcpu -pointer-
is-32bits

-align [32|16|8] Specifies the largest
alignment of struct or
array objects to the 32,
16 or 8 bit boundaries.

Consequently, the array
or struct storage is
strictly determined by
the size of the
individual data objects
without member and
end padding.

mcpu, hc08,
hc12,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32 bits.

polyspace-bug-finder-server -
target mcpu -align 16

See also:

• Management of wchar_t (-wchar-t-type-is)
• Management of size_t (-size-t-type-is)
• Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard typedef-s such
as size_t, wchar_t and ptrdiff_t.

Examples
Targets for GCC Based Compilers

If you select one of the gnu#.x compilers for Compiler (-compiler), you can specify one of the
supported target processor types. See Target processor type (-target). If a target processor
type is not directly listed as supported, you can create the target by using this option.

For instance, you can create these targets:

• Tricore: Use these options:

2 Analysis Options

2-40

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

• PowerPC: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

• ARM: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

• MSP430: Use these options:

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

See Also
Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Generic target options

2-41

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependency” on page 2-42 for other options you must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page 2-42.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr types are not
standard C types. Therefore, you must specify their sizes explicitly for the Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Code Prover): polyspace-code-prover -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -compiler iar -
sfr-types sfr=8,sfr16=16 ...
Example (Code Prover Server): polyspace-code-prover-server -lang c -compiler iar
-sfr-types sfr=8,sfr16=16 ...

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-42

“Supported Keil or IAR Language Extensions”

 Sfr type support (-sfr-types)

2-43

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up or down.

Note a = (a / b) * b + a % b is always true.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -div-round-down. See “Command-Line Information” on page 2-
45.

Why Use This Option

Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990). The standard
stipulates that "if either operand of / or % is negative, whether the result of the / operator, is the
largest integer less or equal than the algebraic quotient or the smallest integer greater or equal than
the quotient, is implementation defined, same for the sign of the % operator". The standard allows
compilers to choose their own implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not required. The
standard enforces division with rounding towards zero (section 6.5.5).

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer less than or
equal to the algebraic quotient. The result of the % operator is deduced from a % b = a - (a /
b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.

 Off (default)
If either operand of / or % is negative, the result of the / operator is the smallest integer greater
than or equal to the algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

2 Analysis Options

2-44

Command-Line Information
Parameter: -div-round-down
Default: Off
Example (Bug Finder): polyspace-bug-finder -div-round-down
Example (Code Prover): polyspace-code-prover -div-round-down
Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-down

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Division round down (-div-round-down)

2-45

Enum type definition (-enum-type-definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending on the
enumerator values and the selected definition. When using this option, each enum type is represented
by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -enum-type-definition. See “Command-Line Information” on
page 2-47.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this option so that
you can emulate your compiler.

To check your compiler settings:

1 Compile this code using the compiler settings that you typically use:

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;

int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)];

If compilation fails, you have to use one of auto-signed-first or auto-unsigned-first.
2 Compile this code using the compiler settings that you typically use:

#include <limits.h>

enum { MYINTMAX = INT_MAX } myintenum_t;

int dummy[(MYINTMAX + 1) < 0 ? -1:1];

If compilation fails, use auto-signed-first for this option, otherwise use auto-unsigned-
first.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

2 Analysis Options

2-46

For the gnu and clang compilers, it uses the first type that can hold all of the enumerator values
from this list: unsigned int, signed int, unsigned long, signed long, unsigned long
long and signed long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator values from this
list: char, unsigned char, short, unsigned short, int, and unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed char,
unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, unsigned long, signed long long, and unsigned long long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned int,
unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short, signed int,
signed long, and signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-signed-
first
Example (Code Prover): polyspace-code-prover -enum-type-definition auto-signed-
first
Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-definition
auto-signed-first
Example (Code Prover Server): polyspace-code-prover-server -enum-type-definition
auto-signed-first

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Enum type definition (-enum-type-definition)

2-47

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation” on page 2-
48.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 2-49.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed and has
negative values, the behavior is implementation-defined. Different compilers choose between
arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior for right
shifts.

For example, consider this right shift expression:

2 Analysis Options

2-48

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at compilation time.
Logically, this expression is equivalent to 4095. However, arithmetically, the result is -1. This
statement causes a compilation error (arrays cannot have negative size) because the standard right-
shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this option is set,
logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift
Example (Code Prover): polyspace-code-prover -logical-signed-right-shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-signed-right-
shift
Example (Code Prover Server): polyspace-code-prover-server -logical-signed-right-
shift

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Signed right shift (-logical-signed-right-shift)

2-49

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-50 for other options you must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on page 2-50.

Why Use This Option

If your compiler defines char16_t and/or char32_t through a typedef statement or by using
includes, use this option to turn off the standard Polyspace definition of char16_t and char32_t.

To check if your compiler defines these types, compile this code using the compiler settings that you
typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and char32_t.
Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is set to CPP or C-CPP.
• Compiler (-compiler) is set to generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -cpp-
version cpp11 -no-uliterals

2 Analysis Options

2-50

Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp -cpp-
version cpp11 -no-uliterals
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -compiler
gnu4.7 -cpp-version cpp11 -no-uliterals
Example (Code Prover Server): polyspace-code-prover-server -compiler gnu4.7 -lang
cpp -cpp-version cpp11 -no-uliterals

See Also
Compiler (-compiler)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Block char16/32_t types (-no-uliterals)

2-51

Pack alignment value (-pack-alignment-value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -pack-alignment-value. See “Command-Line Information” on
page 2-52.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into memory, use this
option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this option for your
Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify this option
for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example (Bug Finder): polyspace-bug-finder -compiler visual10 -pack-alignment-
value 4
Example (Code Prover): polyspace-code-prover -compiler visual10 -pack-alignment-
value 4
Example (Bug Finder Server): polyspace-bug-finder-server -compiler visual10 -
pack-alignment-value 4

2 Analysis Options

2-52

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

Example (Code Prover Server): polyspace-code-prover-server -compiler visual10 -
pack-alignment-value 4

See Also

 Pack alignment value (-pack-alignment-value)

2-53

Ignore pragma pack directives (-ignore-pragma-
pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line Information” on page
2-54.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one declaration follows a
#pragma pack(2) statement. Because the default alignment is 8 bytes, the different packing for the
two structures causes a linking error. Use this option to avoid such errors.

Settings
 On

The analysis ignores the #pragma directives.
 Off (default)

The analysis takes into account specifications in the #pragma directives.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack
Example (Code Prover): polyspace-code-prover -ignore-pragma-pack
Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-pragma-pack

See Also

2 Analysis Options

2-54

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned char, unsigned short,
unsigned int, unsigned long or unsigned long long. If you do not specify this option, your
choice of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -size-t-type-is. See “Command-Line Information” on page 2-
56.

Why Use This Option

The analysis associates a data type with size_t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

If you run into compilation errors during Polyspace analysis and trace the error to the definition of
size_t, it is possible that you use a compiler option and change your compiler default. To probe
further, compile this code with your compiler using the options that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler (along with compiler options) defines size_t using a
different underlying type. Replace unsigned int with another type such as unsigned long and
try again.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

 Management of size_t (-size-t-type-is)

2-55

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-char | unsigned-int | unsigned-short |
unsigned-long | unsigned-long-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long
Example (Code Prover Server): polyspace-code-prover-server -size-t-type-is
unsigned-long

See Also
-custom-target

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-56

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option, your choice
of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information” on page 2-
57.

Why Use This Option

The analysis associates a data type with wchar_t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is

 Management of wchar_t (-wchar-t-type-is)

2-57

Value: defined-by-compiler | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int
Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-int
Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-is signed-
int
Example (Code Prover Server): polyspace-code-prover-server -wchar-t-type-is
signed-int

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-58

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node. See “Dependency” on page 2-59 for other options that you must also
enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on page 2-59.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not in others.
Then, their linkage is not the same and it causes a link error according to the ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may not resolve
all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C
Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -no-extern-C

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Ignore link errors (-no-extern-c)

2-59

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line: Use the option -D. See “Command-Line Information” on page 2-61.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as defined when you build your code, it executes code in a #ifdef _WIN32 statement. If
Polyspace does not consider that macro as defined, you must use this option to replace the macro
with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by default. Use
this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For instance, the
following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifdef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is not
defined. You must define _WIN32.

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be in the
format Macro=Value. If you want Polyspace to ignore the macro, leave the Value blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.

2 Analysis Options

2-60

• name with no equals sign or value replaces all instances of name by 1. To define a macro to
execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use this option

to replace all occurrences of the keyword with a blank string in preprocessed code. The
replacement occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface (desktop products only), enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing. For example:

int __far* pValue;

is converted to:

int * pValue;
• Polyspace recognizes keywords such as restrict and does not allow their use as identifiers. If

you use those keywords as identifiers (because your compiler does not recognize them as
keywords), replace the disallowed name with another name using this option. The replacement
occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

• Your compiler specification determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition coming from a compiler specification, use this option.
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option multiple times.
Parameter: -D
No Default
Value: flag=value
Example (Bug Finder): polyspace-bug-finder -D HAVE_MYLIB -D int32_t=int
Example (Code Prover): polyspace-code-prover -D HAVE_MYLIB -D int32_t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE_MYLIB -D
int32_t=int
Example (Code Prover Server): polyspace-code-prover-server -D HAVE_MYLIB -D
int32_t=int

See Also
Disabled preprocessor definitions (-U)

 Preprocessor definitions (-D)

2-61

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-62

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line: Use the option -U. See “Command-Line Information” on page 2-64.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as undefined when you build your code, it executes code in a #ifndef _WIN32 statement. If
Polyspace considers that macro as defined, you must explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option allows you
undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined. For
instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifndef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is defined.
You must undefine _WIN32.

Settings
No Default

Using the button, add a new row for each macro being undefined.

Tips
Your compiler specification determines the values of many compiler-specific macros. In case you want
to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override a macro definition coming from a compiler specification, use the option
Preprocessor definitions (-D).

 Disabled preprocessor definitions (-U)

2-63

• To undefine the macro, use this option.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option multiple times.
Parameter: -U
No Default
Value: macro
Example (Bug Finder): polyspace-bug-finder -U HAVE_MYLIB -U USE_COM1
Example (Code Prover): polyspace-code-prover -U HAVE_MYLIB -U USE_COM1
Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE_MYLIB -U
USE_COM1
Example (Code Prover Server): polyspace-code-prover-server -U HAVE_MYLIB -U
USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-64

Source code encoding (-sources-encoding)
Specify the encoding that the analysis uses to interpret non-ASCII characters in source code

Description
Specify the encoding of your source files. The analysis uses this information to interpret non-ASCII
characters in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line: Use the option -sources-encoding. See “Command-Line Information” on page 2-
66.

Why Use This Option

If your source code contains non-ASCII characters, for instance, Japanese or Korean characters, the
Polyspace analysis can interpret the characters and later display the source code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using this option.

Settings
Default: system

system
The analysis uses the default encoding of the operating system.

shift-jis
The analysis uses the Shift JIS (Shift Japanese Industrial Standards) encoding, a character
encoding for the Japanese language.

iso-8859-1
The analysis uses the ISO/IEC 8859-1:1998 encoding, a character encoding that encodes what it
refers to as "Latin alphabet no.1", consisting of 191 characters from the Latin script.

windows-1252
The analysis uses the Windows-1252 encoding, a single-byte character encoding of the Latin
alphabet, used by default in the legacy components of Windows for English and some other
Western languages.

UTF-8
The analysis uses the UTF-8 encoding, a variable width character encoding capable of encoding
all valid code points in Unicode.

Polyspace supports many more encodings. To specify an encoding that is not in the above list in the
Polyspace user interface, enter -sources-encoding encodingname in the Other field. In
particular, if your source files contain a mix of different encodings, you can use -sources-encoding

 Source code encoding (-sources-encoding)

2-65

auto. In this mode, the analysis uses internal heuristics to determine the encoding of your source
files from their contents.

For the full list of supported encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

Command-Line Information
Parameter: -sources-encoding
Default: system
Value: auto | system | shift-jis | iso-8859-1 | windows-1252 | UTF-8
Example (Bug Finder): polyspace-bug-finder -sources-encoding windows-1252
Example (Code Prover): polyspace-code-prover -sources-encoding windows-1252
Example (Bug Finder Server): polyspace-bug-finder-server -sources-encoding
windows-1252
Example (Code Prover Server): polyspace-code-prover-server -sources-encoding
windows-1252

Polyspace supports many more encodings besides the above list. For the full list of supported
encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-66

Code from DOS or Windows file system (-dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 2-67.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or Windows file
system. The option helps you resolve case sensitivity and control character issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names differ only in
case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example (Bug Finder): polyspace-bug-finder -dos -I ./my_copied_include_dir -D
test=1
Example (Code Prover): polyspace-code-prover -dos -I ./my_copied_include_dir -D
test=1

 Code from DOS or Windows file system (-dos)

2-67

Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover Server): polyspace-code-prover-server -dos -I ./
my_copied_include_dir -D test=1

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-68

Stop analysis if a file does not compile (-stop-if-
compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line: Use the option -stop-if-compile-error. See “Command-Line Information” on
page 2-70.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace analysis. This
sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might return some
results for files that do not compile. If a file with compilation errors contains a function definition, the
analysis considers the function undefined. This assumption can sometimes make the analysis less
precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time checks rely
more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

In the user interface of the Polyspace desktop products, you see the compilation errors on the
Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

 Stop analysis if a file does not compile (-stop-if-compile-error)

2-69

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout > Show/Hide
View > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding rule violations.
 Off (default)

The analysis does not stop because of compilation errors, but only files without compilation errors
are analyzed. The analysis does not consider files that do not compile. If a file with compilation
errors contains a function definition, the analysis considers the function undefined. If the analysis
needs the definition of such a function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any value in the

range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-time check
can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, in the user interface of the Polyspace desktop products, the
Dashboard pane has a link, which shows that some files failed to compile. You can click the link
and see the compilation errors on the Output Summary pane.

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout > Show/Hide
View > Run Log.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-compile-
error
Example (Code Prover): polyspace-code-prover -sources filename -stop-if-compile-
error
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -stop-
if-compile-error
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
stop-if-compile-error

2 Analysis Options

2-70

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2017a

 Stop analysis if a file does not compile (-stop-if-compile-error)

2-71

Command/script to apply to preprocessed files (-
post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 2-74.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or imprecisions of the
analysis while keeping your original source files untouched. For instance, suppose Polyspace does not
recognize a compiler-specific keyword. If you are certain that the keyword is not relevant for the
analysis, you can run a Perl script to remove all instances of the keyword. When you use this option,
the software removes the keyword from your preprocessed code but keeps your original code
untouched.

Use a script only if the existing analysis options do not meet your requirements. For instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular expressions. For
regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -code-
behavior-specifications.

However, the option supports mapping to only a subset of standard library functions. To map to an
unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this option.
Contact MathWorks Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the command or
script. This script is executed before verification.

2 Analysis Options

2-72

Tips
• Your script must be designed to process the standard output from preprocessing and produce its

results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words, it must not

add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior on the
location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path
to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe absolute_path
\replace_keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as C:\Program
Files\Polyspace\R2019a\ and absolute_path is the location of the Perl script. If the paths
contain spaces, use quotes to enclose the full path names.

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x

 Command/script to apply to preprocessed files (-post-preprocessing-command)

2-73

Expression Meaning
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default
Example in Linux® (Bug Finder): polyspace-bug-finder -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover): polyspace-code-prover -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My_Scripts\replace_keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
-regex-replace-rgx -regex-replace-fmt | Command/script to apply after the end
of the code verification (-post-analysis-command)

Topics
“Prepare Scripts for Polyspace Analysis”
“Remove or Replace Keywords Before Compilation”

2 Analysis Options

2-74

https://perldoc.perl.org/perlre.html#Regular-Expressions

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software enters the
#include statements in the preprocessed code used for analysis, but does not modify the original
source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 2-75.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors. Use this
option to provide the header file for analysis. Suppose you have compilation issues because Polyspace
does not recognize certain compiler-specific keywords. To work around the issues, #define the
keywords in a header file and provide the header file with this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example (Bug Finder): polyspace-bug-finder -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Code Prover): polyspace-code-prover -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Bug Finder Server): polyspace-bug-finder-server -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Code Prover Server): polyspace-code-prover-server -include `pwd`/
sources/a_file.h -include /inc/inc_file.h

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Include (-include)

2-75

“Gather Compilation Options Efficiently”

2 Analysis Options

2-76

Include folders (-I)
View include folders used for analysis

Description
This option is relevant only for the user interface of the Polyspace desktop products.

View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the include folders
in the configuration associated with a result. For instance, in the user interface:

• To add include folders, on the Project Browser, right-click your project. Select Add Source.
• To view the include folders that you used, with your results open, select Window > Show/Hide

View > Configuration. Under the node Environment Settings, you see the folders listed under
Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the Polyspace
desktop products. Unlike other options, you do not specify include folders on the Configuration
pane. Instead, you add your include folders on the Project Browser pane.

See Also
-I | Include (-include)

 Include folders (-I)

2-77

Constraint setup (-data-range-specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only specify external
constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables, function
inputs and return values of stubbed functions using a Constraint Specification template file. The
template file is an XML file that you can generate in the Polyspace user interface.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -data-range-specifications. See “Command-Line Information”
on page 2-79.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as variable ranges
and allowed buffer size for pointers. Sometimes the assumptions are broader than what you expect
because:

• You have not provided the complete code. For example, you did not provide some of the function
definitions.

• Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path does not occur at run time, the orange check indicates a false
positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on global
variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for subsequent
analyses. If your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Settings
No Default

2 Analysis Options

2-78

Enter full path to the template file. Alternately, click to open a Constraint Specification
wizard. This wizard allows you to generate a template file or navigate to an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example (Bug Finder): polyspace-bug-finder -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub) | Ignore default initialization of
global variables (-no-def-init-glob)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify External Constraints”

 Constraint setup (-data-range-specifications)

2-79

Ignore default initialization of global variables (-
no-def-init-glob)
Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless they are
explicitly initialized in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -no-def-init-glob. See “Command-Line Information” on page 2-
81.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default analysis follows
the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the instances where
global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification generates a
red Non-initialized variable error if your code reads a global or static variable before writing to
it.

If you enable this option, global variables are considered uninitialized unless you explicitly
initialize them in the code. Note that this option overrides the option Variables to
initialize (-main-generator-writes-variables). Even if you initialize variables with
the generated main, this option forces the analysis to ignore the initialization.

 Off (default)
Polyspace considers global variables and static variables to be initialized according to C99 or ISO
C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

2 Analysis Options

2-80

Tips
Static local variables have the same lifetime as global variables even though their visibility is limited
to the function where they are defined. Therefore, the option applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-def-init-
glob
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-def-init-glob

See Also
Non-initialized variable

Topics
“Prepare Scripts for Polyspace Analysis”

 Ignore default initialization of global variables (-no-def-init-glob)

2-81

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
Specify that the verification must not use Polyspace implementations of the Standard Template
Library.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node. See “Dependency” on page 2-82 for other options that you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on page 2-82.

Why Use This Option

The analysis uses an efficient implementation of all class templates from the Standard Template
Library (STL). If your compiler redefines the templates, in some cases, your compiler implementation
can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates. You must also
explicitly provide the path to your compiler includes. See “C++ Standard Template Library Stubbing
Errors” (Polyspace Code Prover Server).

Settings
 On

The verification does not use Polyspace implementations of the Standard Template Library.

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-stl-stubs
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-stl-stubs

2 Analysis Options

2-82

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 No STL stubs (-no-stl-stubs)

2-83

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -functions-to-stub. See “Command-Line Information” on page
2-85.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to consider the
function body. You can use this option to stub the function and then specify constraints on its
return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the function
returns all possible values that the function return type allows. You can use this option to stub the
function and then specify constraints on its return value.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded functions,
the argument syntax. For the argument syntax, separate function arguments with semicolons. See the
following code and table for examples.

//simple function

void test(int a, int b);

2 Analysis Options

2-84

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;myTyp
e)

Tips
• Code Prover makes assumptions about the arguments and return values of stubbed functions. For

example, Polyspace assumes that the return values of stubbed functions are full range. These
assumptions can affect checks in other sections of the code. See “Stubbed Functions” (Polyspace
Code Prover).

• If you stub a function, you can constrain the range of function arguments and return value. To
specify constraints, use the analysis option Constraint setup (-data-range-
specifications).

• For C functions, these special characters are allowed:() < > ; _

For C++ functions, these special characters are allowed : () < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example (Code Prover): polyspace-code-prover -sources file_name -functions-to-
stub function_1,function_2

 Functions to stub (-functions-to-stub)

2-85

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-86

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you generate
code from a Simulink model that uses Lookup Table blocks using MathWorks code generation
products.

Specify that the verification must stub autogenerated functions that use certain kinds of lookup tables
in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables” (Polyspace Code
Prover) in Simulink Configuration Parameters, which performs the same task.

User interface (desktop products only): In your Polyspace project configuration, the option is on the
Inputs & Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions. See
“Command-Line Information” on page 2-88.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code, the
functions corresponding to Lookup Table blocks also use lookup tables. The function names follow
specific conventions. The verification uses the naming conventions to identify if the lookup tables in
the functions use linear interpolation and no extrapolation. The verification then replaces such
functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

2-87

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The stub ensures

that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses the function name. In your analysis results, you see that the function is not
analyzed. If you place your cursor on the function name, you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++ S-Function

using lookup tables with the model, these functions do not follow the naming conventions for
autogenerated functions. The option does not cause them to be stubbed. If you want the same
behavior for your handwritten lookup table functions as the autogenerated functions, use the
option -code-behavior-specifications and map your function to the
__ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification purposes, if you
want your verification tool to be independent of the code generation tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example (Code Prover): polyspace-code-prover -sources file_name -stub-embedded-
coder-lookup-table-functions
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stub-embedded-coder-lookup-table-functions

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

2 Analysis Options

2-88

Generate results for sources and (-generate-
results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

The option applies only to coding rule violations and code metrics. You cannot suppress Code Prover
run-time checks from select source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -generate-results-for. See “Command-Line Information” on
page 2-90.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. Often, other header files belong to a third-party library. Though these header files are
required for a precise analysis, you are not interested in reviewing findings in those headers.
Therefore, by default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, change the default value of this option.

Settings
Default: source-headers

source-headers
Results appear on source files and header files in the same folder as the source files or in
subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

all-headers
Results appear on source files and all header files. The header files can be in the same folder as
source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

 Generate results for sources and (-generate-results-for)

2-89

custom
Results appear on source files and the files that you specify. If you enter a folder name, results
appear on header files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not generate

results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ but not
generated for other header
files in C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files irrespective
of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: source-headers | all-headers | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"

2 Analysis Options

2-90

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 Generate results for sources and (-generate-results-for)

2-91

Do not generate results for (-do-not-generate-
results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

The option applies only to coding rule violations, code metrics and unused global variables. You
cannot suppress Code Prover run-time checks from source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -do-not-generate-results-for. See “Command-Line
Information” on page 2-95.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. If you are not interested in reviewing the findings in those headers, change the
default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

If an include folder is a subfolder of a source folder, results are generated for files in that include
folder even if you specify the option value include-folders. In this situation, use the option
value custom and explicitly specify the include folders to ignore.

all-headers
Results are not generated for all header files. The header files can be in the same folder as source
files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

2 Analysis Options

2-92

custom
Results are not generated for the files that you specify. If you enter a folder name, results are
suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option Generate

results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ but not
generated for other header
files in C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header files
irrespective of what you specify for the option Generate results for sources and.

3 If a defect or coding rule violation involves two files and you do not generate results for one of
the files, the defect or rule violation still appears. For instance, if you define two variables with
similar-looking names in files myFile.cpp and myFile.h, you get a violation of the MISRA C++
rule 2-10-1, even if you do not generate results for myFile.h. MISRA C++ rule 2-10-1 states
that different identifiers must be typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the significance
of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one file and
only one file.

 Do not generate results for (-do-not-generate-results-for)

2-93

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly one external
definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space shall be
distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once in one and

only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly one external
definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically unambiguous.
• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an identifier

declared in an outer scope.
• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple translation units

shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-specification, then all

declarations of the same function (in other translation units) shall be declared with the same
set of type-ids.

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely on
significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the presence/absence
of the underscore character, the interchange of the letter O with the number 0 or the letter D,
the interchange of the letter I with the number 1 or the letter l, the interchange of the letter
S with the number 5, the interchange of the letter Z with the number 2 and the interchange of
the letter n with the letter h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with nested scope.
• Declaration mismatch — Mismatch occurs between function or variable declarations.

2 Analysis Options

2-94

4 If a global variable is never used after declaration, it appears in Code Prover results as an unused
global variable. However, if it is declared in a file for which you do not want results, you do not
see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace typically
shows the result on the macro definition instead of the macro occurrences so that you review the
result only once. Even if the macro is used in a suppressed file, the result is still shown on the
macro definition, if the definition occurs in an unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"

See Also
Generate results for sources and (-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 Do not generate results for (-do-not-generate-results-for)

2-95

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node.

Command line: See “Command-Line Information” on page 2-96.

Why Use This Option

If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if your OSEK
project includes OIL files, Polyspace can parse these files. The software sets up tasks, interrupts,
cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to set up the
multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By using the -
osek-multitasking option or the -autosar-multitasking option, you enable external
multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-osek-
multitasking)

2 Analysis Options

2-96

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 External multitasking configuration

2-97

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify the OIL files that Polyspace parses to set up the multitasking configuration of your OSEK
project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-101 for other options you must also enable.

Command line: Use the option -osek-multitasking. See “Command-Line Information” on page
2-101.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up tasks, interrupts, cyclical
tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their subfolders.
custom

Look for OIL files on the specified path and the path subfolders. You can specify a path to the OIL
files or to the folder containing the files.

When you select this option, in your source code, Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

2 Analysis Options

2-98

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM definitions. The
analysis uses these definitions and the supported multitasking keywords to configure tasks,
interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and run an
analysis on this project. To try the steps in this example, use the demo files in the folder
polyspaceroot/help/toolbox/bugfinder/examples/External_multitasking/OSEK or
polyspaceroot/help/toolbox/codeprover/examples/External_multitasking/OSEK.
polyspaceroot is the Polyspace installation folder. The analysis results apply to this example code.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/codeprover/
examples/External_multitasking/OSEK to your machine, for instance in
C:\Polyspace_worskpace\OSEK.

 OIL files selection (-osek-multitasking)

2-99

2 Run an analysis on your OSEK project by using the command:

• Bug Finder:

polyspace-bug-finder -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover:

polyspace-code-prover -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Bug Finder Server:

polyspace-bug-finder-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover Server:

polyspace-code-prover-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write operation from
tasks init and afterinit1. See Data race.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask()) after init
increments var2. Similarly, there is no defect on var1 because it is protected by the
GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is used in tasks
init and afterinit1 with no protection from interruption during the read and write operations.
The analysis also shows that the cyclic task operation on var4 can potentially cause an overflow. See
Potentially unprotected variable and Overflow.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

...
void func()
{
 var4++;
}

2 Analysis Options

2-100

Variable var2 is not shared because afterinit1 goes to an active state (ActivateTask()) after
init increments var2. Variable var1 is a protected variable through the critical sections from the
GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL files, open the
Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace ignores syntax elements of your OIL files that do not follow the syntax defined here.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -osek-multitasking
Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover): polyspace-code-prover -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources source_path -
I include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'

See Also

Introduced in R2017b

 OIL files selection (-osek-multitasking)

2-101

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

ARXML files selection (-autosar-multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug Finder.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of your
AUTOSAR project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-103 for other options you must also enable.

Command line: Use the option -autosar-multitasking. See “Command-Line Information” on
page 2-101.

Why Use This Option

If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements, Polyspace can parse
these files to set up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them
up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking API in your
source code to declare and define tasks and interrupts. Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource, OsAlarm, and
OsEvent definitions. The analysis uses these definitions and the supported multitasking keywords to
configure tasks, interrupts, cyclical tasks, and critical sections.

2 Analysis Options

2-102

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your ARXML
files, open the Concurrency window from the Dashboard pane. In that window, under the Entry
points column, the names of the elements are extracted from their <SHORT-NAME> values in the
ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR specification
version 4.0 and later.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-autosar-multitasking C:\Polyspace_Workspace\AUTOSAR\myFile.arxml
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml

See Also
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection) | External multitasking configuration | OIL files selection (-osek-
multitasking)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 ARXML files selection (-autosar-multitasking)

2-103

Configure multitasking manually
Consider that code is intended for multitasking

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether your code is a multitasking application. This option allows you to manually configure
the multitasking structure for Polyspace.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node.

Command line: See “Command-Line Information” on page 2-105.

Why Use This Option

By default, Bug Finder determines your multitasking model from your use of multithreading
functions. In Code Prover, you have to enable automatic concurrency detection with the option
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection). However, in some cases, using automatic concurrency detection can slow down the
Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly specify your
multitasking model by using this option. Once you select this option, you can explicitly specify your
entry point functions, cyclic tasks, interrupts and protection mechanisms for shared variables, such
as critical section details.

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
 On

The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other Polyspace options. See
“Configuring Polyspace Multitasking Analysis Manually”.

2 Analysis Options

2-104

 Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

• If a main exists, Code Prover verifies only those functions that are called by the main.
• If a main does not exist, Polyspace verifies the functions that you specify. To verify the

functions, Polyspace generates a main function and calls functions from the generated main
in a sequence that you specify. For more information, see Verify module or library (-
main-generator).

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored. See Verify
files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using any of the options
Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or Interrupts (-interrupts),
you turn on multitasking analysis.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Tasks (-entry-points) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Configure multitasking manually

2-105

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows, μC/OS II and
other multithreading functions.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” (Polyspace Code Prover) for other options that you must
enable or disable.

Command line: Use the option -enable-concurrency-detection. See “Command-Line
Information” on page 2-107.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of multithreading
functions. In Bug Finder, automatic concurrency detection is enabled by default. In Code Prover, you
have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover analysis. In
those cases, you can choose to not enable this option and explicitly specify your multitasking model.
See “Configuring Polyspace Multitasking Analysis Manually”.

Settings
 On

If you use one of the supported functions for multitasking, the analysis automatically detects your
multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of threads, see
“Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring Polyspace
Multitasking Analysis Manually”.

2 Analysis Options

2-106

Dependencies
If you enable this option, your code must contain a main function. You cannot use the Code Prover
options to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -enable-
concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
enable-concurrency-detection

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Auto-Detection of Thread Creation and Critical Section in Polyspace”

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

2-107

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that serve as tasks to your code. If the function does not exist, the verification
warns you and continues the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-109 for other options you must also enable.

Command line: Use the option -entry-points. See “Command-Line Information” on page 2-109.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

2 Analysis Options

2-108

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing entry points must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as task. To use func as task:

1 Create a new function newFunc. The declaration must be of the form void newFunc
(void).

2 Declare arguments to func as volatile variables local to newFunc. Call func inside
newFunc.

3 Specify newFunc as a task.
• If you specify a function as a task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -entry-points
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -entry-points
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
entry-points func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
entry-points func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Tasks (-entry-points)

2-109

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent cyclic tasks. The analysis assumes that operations in the function
body:

• Can execute any number of times.
• Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and interrupts are specified with the option
Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task as
nonpreemptable. See -non-preemptable-tasks. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-111 for other options you must also enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on page 2-112.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with each other. If
the operations use the same shared variable without protection, a data race can occur.

2 Analysis Options

2-110

If both operations are atomic, to see the defect, you have to enable the checker Data race
including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared variable
without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an operation in a
nonpreemptable task or an interrupt. However, the latter operation can interrupt the former.
Therefore, if the operations use the same shared variable without protection, a data race can
occur.

For more information, see “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)
• If a function func takes arguments, you cannot use it directly as a cyclic task. To use func as

cyclic task:

1 Create a new function newFunc. The declaration must be of the form void newFunc
(void).

2 Declare arguments to func as volatile variables local to newFunc. Call func inside
newFunc.

3 Specify newFunc as cyclic task.
• If you specify a function as a cyclic task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).

 Cyclic tasks (-cyclic-tasks)

2-111

• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -cyclic-tasks
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -cyclic-tasks
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -cyclic-tasks
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
cyclic-tasks func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
cyclic-tasks func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Interrupts (-interrupts) |
Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

2 Analysis Options

2-112

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent nonpreemptable interrupts. The analysis assumes that operations in
the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and cyclic tasks are specified with the option
Cyclic tasks (-cyclic-tasks).

To model an interrupt that can be interrupted by other interrupts, specify the interrupt as
preemptable. See -preemptable-interrupts. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-114 for other options you must also enable.

Command line: Use the option -interrupts. See “Command-Line Information” on page 2-115.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var=INT_MAX; occurs in an interrupt and var++ occurs in the body
of a task, an overflow can occur if the interrupt excepts before the operation in the task. The
analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other tasks:

• Data race between two interrupts:

Two operations in different interrupts cannot interfere with each other (unless one of the
interrupts is preemptable). Even if the operations use the same shared variable without
protection, a data race cannot occur.

 Interrupts (-interrupts)

2-113

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other task. Even
if the operations use the same shared variable without protection, a data race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other task unless
the other task is also a nonpreemptable interrupt. Therefore, if the operations use the same
shared variable without protection, a data race can occur.

See “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing interrupts must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as an interrupt. To use func as
interrupt:

1 Create a new function newFunc. The declaration must be of the form void newFunc
(void).

2 Declare arguments to func as volatile variables local to newFunc. Call func inside
newFunc.

3 Specify newFunc as interrupt.
• If you specify a function as an interrupt, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that an interrupt cannot interrupt itself.

2 Analysis Options

2-114

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -interrupts
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -interrupts
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
interrupts func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
interrupts func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

 Interrupts (-interrupts)

2-115

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-117 for other options you must also enable.

Command line: Use the option -routine-disable-interrupts and -routine-enable-
interrupts. See “Command-Line Information” on page 2-118.

Why Use This Option

The analysis uses the information to look for data race defects. For instance, in the following code,
the function disable_all_interrupts disables all interrupts until the function
enable_all_interrupts is called. Even if task, isr1 and isr2 run concurrently, the operations
x=0 or x=1 cannot interrupt the operation x++. There are no data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

2 Analysis Options

2-116

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Non-cyclic tasks.

See Tasks (-entry-points).
• Cyclic tasks.

See Cyclic tasks (-cyclic-tasks).
• Interrupts.

See Interrupts (-interrupts).

In other words, the analysis considers that the body of operations between the disabling routine
and the enabling routine is atomic and not interruptible at all.

• Protection via disabling interrupts is conceptually different from protection via critical sections.

In the Polyspace multitasking model, to protect two sections of code from each other via critical
sections, you have to embed them in the same critical section. In other words, you have to place
the two sections between calls to the same lock and unlock function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the operation
x=1 in isr2. If the function begin_critical_section disabled all interrupts, calling it before
x++ would have been sufficient to protect it.

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

2-117

Typically, you use one pair of routines in your code to disable and reenable interrupts, but you can
have many pairs of lock and unlock functions that implement critical sections.

• The routines that disable and enable interrupts must be functions. For instance, if you define a
function-like macro:

#define disable_interrupt() interrupt_flag=0

You cannot use the macro disable_interrupt() as routine disabling interrupts.

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example (Bug Finder): polyspace-bug-finder -sources file_name -routine-disable-
interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
routine-disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2017a

2 Analysis Options

2-118

Critical section details (-critical-section-begin
-critical-section-end)
Specify functions that begin and end critical sections

Description
This option is not available for code generated from MATLAB code or Simulink models.

When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance, lock() and
unlock() in above example).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-120 for other options you must also enable.

Command line: Use the option -critical-section-begin and -critical-section-end. See
“Command-Line Information” on page 2-121.

Why Use This Option

When a task my_task calls a lock function my_lock, other tasks calling my_lock must wait till
my_task calls the corresponding unlock function. Therefore, critical section operations in the other
tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each other.

int var;

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

Using your specifications, a Code Prover verification checks if your placement of lock and unlock
functions protects all shared variables from concurrent access. When determining values of those
variables, the verification accounts for the fact that critical sections in different tasks do not interrupt
each other.

 Critical section details (-critical-section-begin -critical-section-end)

2-119

A Bug Finder analysis uses the critical section information to look for concurrency defects such as
data race and deadlock.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in
Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting routine: my_lock
Ending routine: my_unlock
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

To work around the limitation, see “Define Critical Sections with Functions That Take Arguments”.
• The functions that begin and end critical sections must be functions. For instance, if you define a

function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.
• When you use multiple critical sections, you can run into issues such as:

2 Analysis Options

2-120

• Deadlock: A sequence of calls to lock functions causes two tasks to block each other.
• Double lock: A lock function is called twice in a task without an intermediate call to an unlock

function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects” (Polyspace Bug
Finder Access).

Then, use Polyspace Code Prover to detect if your placement of lock and unlock functions actually
protects all shared variables from concurrent access. See “Global Variables” (Polyspace Code
Prover Access).

• When considering possible values of shared variables, a Code Prover verification takes into
account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking, the
software does not take your specifications into account and considers that the variable can be
concurrently accessed.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example (Bug Finder): polyspace-bug_finder -sources file_name -critical-section-
begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover): polyspace-code-prover -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Bug Finder Server): polyspace-bug_finder-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Define Critical Sections with Functions That Take Arguments”
“Concurrency Defects” (Polyspace Bug Finder Access)
“Global Variables” (Polyspace Code Prover Access)

 Critical section details (-critical-section-begin -critical-section-end)

2-121

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify entry point functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-122 for other options you must also enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line Information”
on page 2-123.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive protects all
shared variables from concurrent access. When determining possible values of those shared
variables, the verification accounts for the fact that temporally exclusive tasks do not interrupt each
other. See “Global Variables” (Polyspace Code Prover Access).

A Bug Finder analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace considers
that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

2 Analysis Options

2-122

Tips
When considering possible values of shared variables, a Code Prover verification takes into account
your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking in Code
Prover, the software does not take your specifications into account and considers that the variable
can be concurrently accessed.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

To enter comments, begin with #. For an example, see the file polyspaceroot\polyspace
\examples\cxx\Code_Prover_Example\sources\temporal_exclusions.txt. Here,
polyspaceroot is the Polyspace installation folder, for example C:\Program Files\Polyspace
\R2019a.
Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example (Bug Finder): polyspace-bug-finder -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Code Prover): polyspace-code-prover -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects” (Polyspace Bug Finder Access)
“Global Variables” (Polyspace Code Prover Access)

 Temporally exclusive tasks (-temporal-exclusions-file)

2-123

Set checkers by file (-checkers-selection-file)
Define a custom set of coding standards checks for your analysis

Description
Specify the full path of a configuration XML file where you define custom selections of coding
standards checkers. You can, in the same file, define a custom selection of checkers for each of these
coding standards:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)

You can also define custom rules to match identifiers in your code against text patterns you specify.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line: Use the option -checkers-selection-file. See “Command-Line Information” on
page 2-126.

When you enable this option, set the coding standards you select to from-file to use the specified
configuration file.

Why Use This Option

Use this option to define a selection of coding standard checkers specific to your organization. The
configuration of different coding standards is consolidated in a single XML file which you can reuse
across projects to enforce common coding standards.

Settings
 On

Polyspace checks your code against the selection of coding standard checkers, or the custom
rules, defined in the configuration file you specify.

To create a configuration file, open the Findings selection window by clicking . In the left
pane, choose the coding standard you want to configure, then select the rules you want to check
for this coding standard in the right pane.

2 Analysis Options

2-124

To use or update an existing file, enter the full path to the file in the field provided or click
Browse in the Findings selection window.

 Off (default)
Polyspace does not check your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

Tips
• With the Polyspace desktop products, specify the coding standard configuration in the user

interface of the desktop products. When you save the configuration, an XML file is automatically
created for use in the current and other projects.

• With the Polyspace Server products, you have to create a coding standard XML from scratch.
Depending on the standard that you want to enable, make a writeable copy of one of the files in

 Set checkers by file (-checkers-selection-file)

2-125

polyspaceserverroot\help\toolbox\polyspace_bug_finder_server\examples
\coding_standards_XML and turn off rules using entries in the XML file (all rules from a
standard are enabled in the template). Here, polyspaceserverroot is the root installation
folder for the Polyspace Server products, for instance, C:\Program Files\Polyspace Server
\R2019a.

For instance, to turn off MISRA C: 2012 rule 8.1, use this entry in the file
misra_c_2012_rules.xml:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="off">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “CERT C++ Rules” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

Note The XML format of the checker configuration file can change in future releases.

Command-Line Information
Parameter: -checkers-selection-file
Value: Full path of XML configuration file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Code Prover): polyspace-code-prover -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file

See Also
Do not generate results for (-do-not-generate-results-for)

2 Analysis Options

2-126

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”

 Set checkers by file (-checkers-selection-file)

2-127

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option corresponds
to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-129 for other options that you
must also enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 2-129.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

2 Analysis Options

2-128

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C:2004)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-rules |
system-decidable-rules | from-file
Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra2 all-rules

 Check MISRA C:2004 (-misra2)

2-129

Example (Code Prover): polyspace-code-prover -sources file_name -misra2 all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra2 all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra2 all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_c_2004_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML . Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra2 "custom_standard.conf" -checkers-selection-file

misra_c_2004_rules.xml -misra2 from-
file

.

Note The XML format of the checker configuration file can change in future releases.

2 Analysis Options

2-130

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)

 Check MISRA C:2004 (-misra2)

2-131

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-133 for other options that you
must also enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on page 2-133.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: OBL-rules

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.

2 Analysis Options

2-132

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce the number
of unproven results. For more information, see “Software Quality Objective Subsets (AC AGC)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (AC AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | from-file
Default: OBL-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-ac-agc all-
rules

 Check MISRA AC AGC (-misra-ac-agc)

2-133

Example (Code Prover): polyspace-code-prover -sources file_name -misra-ac-agc
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-ac-agc all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-ac-agc all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_ac_agc_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-ac-agc "custom_standard.conf" -checkers-selection-file

misra_ac_agc_rules.xml -misra-ac-agc
from-file

.

Note The XML format of the checker configuration file can change in future releases.

2 Analysis Options

2-134

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)

 Check MISRA AC AGC (-misra-ac-agc)

2-135

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the option
corresponds to a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-137 for other options that you
must also enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 2-138.

Why Use This Option

Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: mandatory-required

mandatory
Check for mandatory guidelines.

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these guidelines. However, you must complete a

formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation record, see
Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select custom. To

clear specific guidelines, click . In the Comment column, enter your rationale for
disabling a guideline. For instance, you can enter the Deviation ID that refers to a deviation
record for the guideline. The rationale appears in your generated report.

2 Analysis Options

2-136

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality Objective Subsets
(C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code Prover,
observing these rules can further reduce the number of unproven results. For more information,
see “Software Quality Objective Subsets (C:2012)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

 Check MISRA C:2012 (-misra3)

2-137

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in Amendment 1, use
Polyspace Bug Finder.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | single-unit-rules | system-decidable-rules |
all | SQO-subset1 | SQO-subset2 | from-file
Default: mandatory-required
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra3
mandatory-required
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra3
mandatory-required
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra3 mandatory-required
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra3 mandatory-required

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

2 Analysis Options

2-138

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_c_2012_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra3 "custom_standard.conf" -checkers-selection-file

misra_c_2012_rules.xml -misra3 from-
file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

 Check MISRA C:2012 (-misra3)

2-139

“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-140

Use generated code requirements (-misra3-agc-
mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code. This option
changes which rules are mandatory, required, or advisory.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-142 for other options that you must
also enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information” on page 2-
142.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated code. The
option modifies the MISRA C:2012 subsets so that they are tailored for generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding guideline
checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for MISRA C:2012
coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7

 Use generated code requirements (-misra3-agc-mode)

2-141

• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra3 all -
misra3-agc-mode
Example (Code Prover): polyspace-code-prover -sources file_name -misra3 all -
misra3-agc-mode
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra3 all -misra3-agc-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra3 all -misra3-agc-mode

See Also
Check MISRA C:2012 (-misra3) | Do not generate results for (-do-not-generate-
results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-142

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can specify a
data type as effectively Boolean only if you have defined it through an enum or typedef statement in
your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-144 for other options that you
must also enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on page 2-144.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to other
operators.

13.2 Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

15.4 A switch expression should not represent a value that is effectively Boolean.
• MISRA C: 2012

Rule
Number

Rule Statement

10.1 Operands shall not be of an inappropriate essential type
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category
10.5 The value of an expression should not be cast to an inappropriate essential type
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.
16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean, Polyspace
detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

 Effective boolean types (-boolean-types)

2-143

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C:2012 (-misra3)

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover): polyspace-code-prover -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) | Check MISRA
C:2012 (-misra3)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-144

Allowed pragmas (-allowed-pragmas)
Specify pragma directives that are documented

Description
Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA C++ rule
16-6-1. These rules require that you document all pragma directives.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-145 for other options that you
must also enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information” on page 2-
145.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all pragma
directives are documented within the documentation of the compiler. If you list a pragma as
documented using this analysis option, Polyspace does not flag use of the pragma as a violation of
these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during coding rule
checking .

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++:2008 (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover): polyspace-code-prover -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02

 Allowed pragmas (-allowed-pragmas)

2-145

Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C++:2008 (-misra-cpp) | Check
MISRA C:2004 (-misra2)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
“MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-146

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Define naming conventions for identifiers and check your code against them.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on page 2-149.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention allows you to
easily determine the nature of an identifier from its name. For instance, if you define a naming
convention for structures, you can easily tell whether an identifier represents a structured variable or
not.

After analysis, the Results List pane lists violations of the naming conventions. On the Source pane,
for every violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define the text
patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . A Findings selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the right pane to
select custom rule you want to check.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if the rule is

violated.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter All struct fields must begin with s_. This message appears on
the Result Details pane if:

 Check custom rules (-custom-rules)

2-147

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter s_[A-Za-z0-9_]+. Polyspace reports violation of rule 4.3 if a structure
field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not start and end
with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern that ends
with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a text pattern
that ends with a specific suffix and an optional second suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.

To use or update an existing coding rules file, click to open the Findings selection
window then do one of the following:

• Enter the full path to the file in the field provided
• Click Browse and navigate to the file location.

2 Analysis Options

2-148

https://perldoc.perl.org/perlre.html#Regular-Expressions

 Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: from-file, specify the file using Set checkers by file (-checkers-selection-
file)
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define custom coding rules uses the XML format. You can save
selections for custom coding rules and all the coding standards that Polyspace supports in the same
file.

In previous releases, you saved your selection for each coding standard and custom coding rules in
separate text files. Polyspace will stop supporting custom coding rule files in text format in a future
release.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files in text
format, Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the software saves
the consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file custom_rules.xml as a
template to create the XML file where you define a custom selection of coding standard checkers.
This template file is in polyspaceroot\help\toolbox\polyspace_bug_finder_server
\examples\coding_standards_XML. Here, polyspaceroot is the root installation folder for the

 Check custom rules (-custom-rules)

2-149

Polyspace products, for instance, C:\Program Files\Polyspace\R2019a. To update your script,
replace reference to the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
 ...
 <section name="8 Constants">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“Create Custom Coding Rules”
“Custom Coding Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-150

Check MISRA C++:2008 (-misra-cpp)
Check for violations of MISRA C++ rules

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option corresponds to a
subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-152 for other options that you must
also enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page 2-152.

Why Use This Option

Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C++)”

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want

 Check MISRA C++:2008 (-misra-cpp)

2-151

to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | from-file
Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-cpp all-
rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-cpp all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-cpp all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-cpp all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

2 Analysis Options

2-152

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
misra_cpp_2008_rules.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-cpp "custom_standard.conf" -checkers-selection-file

misra_cpp_2008_rules.xml -misra-cpp
from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

 Check MISRA C++:2008 (-misra-cpp)

2-153

“Check for Coding Standard Violations”
“MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-154

Check JSF AV C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Note Polyspace will no longer support custom configuration files in text format in a future release.
See “Compatibility Considerations”.

Description
Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-156 for other options that you must
also enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line Information” on page 2-
156.

Why Use This Option

Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require verification.

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements but do not
require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

 Check JSF AV C++ rules (-jsf-coding-rules)

2-155

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Tips
• If your project uses a setting other than generic for Compiler (-compiler), some rules might

not be completely checked. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | from-file
Default: shall-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -jsf-coding-rules
all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -jsf-coding-
rules all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -jsf-
coding-rules all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
jsf-coding-rules all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then

2 Analysis Options

2-156

click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceserverroot\polyspace
\examples\cxx\Bug_Finder_Example\sources or polyspaceserverroot\polyspace
\examples\cxx\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2019a. To update your script, see this table

Option Use Instead
-jsf-coding-rules
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -jsf-
coding-rules from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

 Check JSF AV C++ rules (-jsf-coding-rules)

2-157

“Check for Coding Standard Violations”
“JSF C++ Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-158

Check AUTOSAR C++ 14 (-autosar-cpp14)
Check for violations of AUTOSAR C++ 14 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of AUTOSAR C++ 14. Each value of the option corresponds to
a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-160 for other options that you
must also enable.

Command line: Use the option -autosar-cpp14. See “Command-Line Information” on page 2-160.

Why Use This Option

Use this option to specify the subset of AUTOSAR C++ 14 rules to check for1.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all
Check for violations of all AUTOSAR C++ 14 rules supported by Polyspace.

See “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access).
required

Check for violations of required rules.

These rules are mandatory requirements placed on your code.
automated

Check for violations of automated rules.

You can automatically enforce these rules by means of static analysis.

1. The Polyspace checkers for AUTOSAR C++14 rules supports AUTOSAR C++14 release 18-03 (March 2018). Out of 390
rules from the standard, 247 rules are supported.

 Check AUTOSAR C++ 14 (-autosar-cpp14)

2-159

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules you want to check for this
coding standard from the right pane of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -autosar-cpp14
Value: all | required | automated | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name -
autosar-cpp14 required
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
file_name -autosar-cpp14 required

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-160

Check SEI CERT-C (-cert-c)
Check for violations of CERT C rules and recommendations

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C rules and recommendations. Each value of the
option corresponds to a subset of the coding standard to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-168 for other options that you
must also enable.

Command line: Use the option -cert-c. See “Command-Line Information” on page 2-168.

Why Use This Option

Use this option to specify the subset of CERT C rules and recommendations to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all-rules
Check for violations of CERT C rules only.

See the CERT C website for an explanation of the difference between rules and recommendations.

List of CERT-C rules that Polyspace checks when you use all-rules

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C

 Check SEI CERT-C (-cert-c)

2-161

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule CON43-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule ERR34-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C

2 Analysis Options

2-162

CERT C: Rule EXP46-C
CERT C: Rule EXP47-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C
CERT C: Rule MSC37-C

 Check SEI CERT-C (-cert-c)

2-163

CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule POS30-C
CERT C: Rule POS33-C
CERT C: Rule POS34-C
CERT C: Rule POS35-C
CERT C: Rule POS36-C
CERT C: Rule POS37-C
CERT C: Rule POS38-C
CERT C: Rule POS39-C
CERT C: Rule POS44-C
CERT C: Rule POS48-C
CERT C: Rule POS49-C
CERT C: Rule POS51-C
CERT C: Rule POS52-C
CERT C: Rule POS54-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C
CERT C: Rule WIN30-C

publish-2016
Check for violations of CERT C rules only, as defined in the 2016 edition of the SEI CERT C
Coding Standard.

See the CERT C website for an explanation of the difference between rules and recommendations.

2 Analysis Options

2-164

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

List of CERT-C rules that Polyspace checks when you use publish-2016

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C

 Check SEI CERT-C (-cert-c)

2-165

CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C

2 Analysis Options

2-166

CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C
CERT C: Rule MSC37-C
CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C

all
Check for violations of all CERT C rules and recommendations supported by Polyspace.

See “CERT C Rules and Recommendations” (Polyspace Bug Finder Access).
from-file

Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

 Check SEI CERT-C (-cert-c)

2-167

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the SEI CERT-C checker analyzes only .c files.

Command-Line Information
Parameter: -cert-c
Value: all-rules | publish-2016 | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -cert-c
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -cert-c all-rules

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“CERT C Rules and Recommendations” (Polyspace Bug Finder Access)

2 Analysis Options

2-168

Check SEI CERT-C++ (-cert-cpp)
Check for violations of CERT C++ rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C++ rules.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-169 for other options that you
must also enable.

Command line: Use the option -cert-cpp. See “Command-Line Information” on page 2-170.

Why Use This Option

Use this option to specify the subset of CERT C++ rules to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all
Check for violations of all CERT C++ rules supported by Polyspace.

See “CERT C++ Rules” (Polyspace Bug Finder Access).
from-file

Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules you want to check for this
coding standard from the right pane of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the SEI CERT-C++ checker analyzes only .cpp files.

 Check SEI CERT-C++ (-cert-cpp)

2-169

Command-Line Information
Parameter: -cert-cpp
Value: all | from-file |
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name -cert-
cpp all
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
file_name -cert-cpp all

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”

2 Analysis Options

2-170

Check ISO/IEC TS 17961 (-iso-17961)
Check for violations of ISO/IEC TS 17961 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of ISO/IEC TS 17961 rules.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-172 for other options that you
must also enable.

Command line: Use the option -iso-17961. See “Command-Line Information” on page 2-172.

Why Use This Option

Use this option to specify the subset of ISO/IEC TS 17961 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

decidable
Check for violations of decidable rules. Violations of these rules depend only on compile-time
static properties, for instance object type or scope of identifiers.

all
Check for violations of all ISO/IEC TS 17961 rules Polyspace supports.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

 Check ISO/IEC TS 17961 (-iso-17961)

2-171

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -iso-17961
Value:decidable | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -iso-17961
decidable
Example: polyspace-bug-finder-server -lang c -sources file_name -iso-17961
decidable

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)

2 Analysis Options

2-172

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source code. The
metrics include file metrics such as number of lines and function metrics such as cyclomatic
complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on page 2-174.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these metrics in your
analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of coding
errors. Additionally, if you run a Code Prover verification on your source code, you might benefit from
checking your code complexity metrics first. If a function is too complex, attempts to verify the
function can lead to a lot of unproven code. For information on how to cap your code complexity
metrics, see “Compute Code Complexity Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase. See

Verification level (-to).

A Code Prover analysis computes the stack usage metrics after the source compliance checking
phase. If you stop a Code Prover verification before source compliance checking, the stack usage
metrics are not reported.

 Calculate code metrics (-code-metrics)

2-173

Command-Line Information
Parameter: -code-metrics
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -code-metrics
Example (Code Prover): polyspace-code-prover -sources file_name -code-metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
code-metrics
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
code-metrics

See Also
Topics
“Compute Code Complexity Metrics”
“Code Metrics” (Polyspace Bug Finder Access)

2 Analysis Options

2-174

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Bug
Finder Analysis node.

Command line: Use the option -checkers. See “Command-Line Information” on page 2-176.

Why Use This Option

The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect checkers. For
instance, if you want to follow a specific security standard, choose a different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software.

See “Polyspace Bug Finder Defects Checkers Enabled by Default”.
all

All defects.

For a list of all defects checkers, see “Defects” (Polyspace Bug Finder Access).
CWE

A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add notes
explaining why you do not enable the other checkers. A spreadsheet of checkers is provided in
polyspaceroot\polyspace\resources. Here, polyspaceroot is the Polyspace installation
folder, such as C:\Program Files\Polyspace\R2019a.

 Find defects (-checkers)

2-175

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -disable-
checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect Checkers”.
Parameter: -checkers
Value: default | all | none | CWE | defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group | defect parameters
Example 1 (Bug Finder): polyspace-bug-finder -sources filename -checkers
numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder): polyspace-bug-finder -sources filename -checkers default
-disable-checkers concurrency,dead_code
Example 1 (Bug Finder Server): polyspace-bug-finder-server -sources filename -
checkers numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder Server): polyspace-bug-finder-server -sources filename -
checkers default -disable-checkers concurrency,dead_code

See Also
“Defects” (Polyspace Bug Finder Access)

Topics
“Prepare Scripts for Polyspace Analysis”
“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

2 Analysis Options

2-176

Run stricter checks considering all values of
system inputs (-checks-using-system-input-
values)
Enable stricter checks and provide examples of values that lead to detected defect

Description
This option affects a Bug Finder analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Enable a stricter static analysis for a subset of numerical and static memory defect checkers.
Polyspace considers all possible values of system inputs and provides examples of values that can
lead to detected defects. For each function foo that you specify with Consider inputs to these
functions (-system-inputs-from), these are the system inputs.

• Each argument of foo.
• Each read of a global variable by foo or one of its callees.

For the main() function, the analysis assumes that the global variables are initialized with value
0.

• Each read of a volatile variable by foo or one of its callees.
• Each return of a stubbed function. a Bug Finder analysis stubs a function if you do not provide the

body of the function in your source code.

The stricter checks are enabled for this subset of defect checkers.

Defect checkers subset

• Array access out of bounds
• Bitwise operation on negative value
• Float conversion overflow
• Float overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Integer overflow
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine
• Null pointer
• Shift of a negative value
• Shift operation overflow
• Sign change integer conversion overflow

 Run stricter checks considering all values of system inputs (-checks-using-system-input-values)

2-177

• Unsigned integer conversion overflow
• Unsigned integer overflow

You can view examples of values that lead to the detected defects in the Events column of the
Results Details pane on the desktop interface or the Polyspace Access web interface.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Bug Finder
Analysis node. See “Dependencies” on page 2-178 for other options that you must also enable.

Command line: Use the option -checks-using-system-input-values. See “Command-Line
Information” on page 2-179.

Why Use This Option

The default Bug Finder analysis does not flag defects that are caused by specific values of unknown
inputs. Since the inputs might be bounded or initialized in a source file that you are not analyzing, or
the specific value causing a defect might not occur in practice, the default analysis behavior helps to
minimize false positives.

Enable this option to run a stricter analysis on a function whose system inputs might cause sporadic
run-time errors during execution. Using this option might result in a longer analysis time.

Settings
 On

Polyspace considers all possible values of system inputs for a subset of numerical and static
memory defect checkers and provides examples of values that lead to detected defects.

 Off (default)
Polyspace considers possible values of a system input only if the input is bounded by constraints
in your code such as assert or if. The analysis provides no examples of values that lead to
detected defects.

Dependencies
• In the desktop interface, this option is enabled only if you enable Find defects (-checkers).
• This option is ignored if you enable Use fast analysis mode for Bug Finder (-fast-

analysis).

Tips
• If you set external constraints on global variables, the analysis shows examples of global variable

values causing defects only within these constraints. See Constraint setup (-data-range-
specifications).

• If the input is a pointer p, the analysis assumes that the pointer is not null and can be safely
dereferenced. The example value of the input causing a defect is the value of *p. This value is
represented as an array in the Results Details pane. For instance, in this code snippet:

void func(int* x){
 int tmp= *(x+3);

2 Analysis Options

2-178

 if(1/(tmp-4))
 return;
}

The example value of the input causing a defect is {0,0,0,4}, where the array represents *x, *(x
+1), *(x+2), and *(x+3). The value *(x+3)=4 causes a division by zero.

• The analysis treats these standard library functions that read values from external sources as
stubbed functions.

• getchar
• getc
• fgetc
• scanf

• The stricter analysis considers all possible values of system inputs but it is not an exhaustive
analysis. If Bug Finder cannot determine whether a particular input causes a defect, no defect is
shown. For more on exhaustive analysis, see “Choose Between Polyspace Bug Finder and
Polyspace Code Prover”.

Command-Line Information
Parameter: -checks-using-system-input-values
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -checkers
numerical,static_memory -checks-using-system-input-values
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checkers numerical,static_memory -checks-using-system-input-values

See Also
Array access out of bounds | Bitwise operation on negative value | Consider
inputs to these functions (-system-inputs-from) | Float conversion overflow |
Float division by zero | Float overflow | Integer conversion overflow | Integer
division by zero | Integer overflow | Invalid use of standard library floating
point routine | Invalid use of standard library integer routine | Null pointer |
Shift of a negative value | Shift operation overflow | Sign change integer
conversion overflow | Unsigned integer conversion overflow | Unsigned integer
overflow

Topics
“Prepare Scripts for Polyspace Analysis”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2020a

 Run stricter checks considering all values of system inputs (-checks-using-system-input-values)

2-179

Consider inputs to these functions (-system-
inputs-from)
Specify functions for which the analysis considers all possible input values

Description
This option affects a Bug Finder analysis only.

Specify the functions in your code for which Polyspace considers all possible input values. For each
function that you specify with this option, the analysis considers all possible values of these inputs:

• Each argument of the function.
• Each read of a global variable by the function or one of its callees.

For the main() function, the analysis assumes that the global variables are initialized with value
0.

• Each read of a volatile variable by the function or one of its callees.
• Each return of a stubbed function. a Bug Finder analysis stubs a function if you do not provide the

body of the function in your source code.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Bug Finder
Analysis node. See “Dependencies” on page 2-181 for other options that you must also enable.

Command line: Use the option -system-inputs-from. See “Command-Line Information” on page
2-181.

Why Use This Option

By default, Polyspace considers all possible input values for the main() function and tasks, if any, or
uncalled functions with at least one callee if your code has no main(). Depending on the issue that
you are investigating by running the stricter checks, specify a different subset of functions to analyze.

Settings
Default: auto

auto
Consider all possible values for inputs to main() function and tasks, if any. You specify tasks with
these options.

• Cyclic tasks (-cyclic-tasks)
• Tasks (-entry-points)
• Interrupts (-interrupts)

When the analyzed code has no main(), the analysis considers all possible values for inputs to
uncalled functions with at least one callee.

2 Analysis Options

2-180

uncalled
Consider all possible values for inputs to all uncalled functions.

all
Consider all possible values for inputs to all functions.

custom
Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
This option is enabled only if you enable Run stricter checks considering all values of
system inputs (-checks-using-system-input-values).

Tips
• The analysis treats these standard library functions that read values from external sources as

stubbed functions.

• getchar
• getc
• fgetc
• scanf

Command-Line Information
Parameter: -system-inputs-from
Value: auto | uncalled | all | custom
Default: auto
Example (Bug Finder): polyspace-bug-finder -sources file_name -checks-using-
system-input-values -system-inputs-from custom=func1,func2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checks-using-system-input-values -system-inputs-from custom=func1,func2

See Also
Run stricter checks considering all values of system inputs (-checks-using-
system-input-values)

Topics
“Prepare Scripts for Polyspace Analysis”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2020a

 Consider inputs to these functions (-system-inputs-from)

2-181

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-182 for other options that you must also
enable.

Command line: Use the option -class-analyzer. See “Command-Line Information” on page 2-
183.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified classes (-
class-analyzer-calls) to specify the class methods that the generated main must call. Unless a
class method is called directly or indirectly from main, the software does not analyze the method.

Settings
Default: all

all
Polyspace can use all classes to generate a main. The generated main calls methods that you
specify using Functions to call within the specified classes.

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main calls methods
from classes that you specify using Functions to call within the specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

2 Analysis Options

2-182

Tips
If you select none for this option, Polyspace will not verify class methods that you do not call
explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2

See Also
Analyze class contents only (-class-only) | Functions to call within the
specified classes (-class-analyzer-calls) | Skip member initialization check (-
no-constructors-init-check) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

 Class (-class-analyzer)

2-183

Functions to call within the specified classes (-
class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify class methods that Polyspace uses to generate a main. The generated main can call static,
public and protected methods in classes that you specify using the Class option.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-185 for other options that you must also
enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line Information” on
page 2-185.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods that the
generated main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: unused

all
The generated main calls all public and protected methods. It does not call methods inherited
from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from a parent
class.

inherited-all
The generated main calls all public and protected methods including those inherited from a
parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent class.

2 Analysis Options

2-184

unused
The generated main calls public and protected methods that are not called in the code.

unused-public
The generated main calls public methods that are not called in the code. It does not call methods
inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the code including
those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including those inherited
from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused | unused-
public | inherited-unused | inherited-unused-public | custom=method1[,method2,...]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”

 Functions to call within the specified classes (-class-analyzer-calls)

2-185

“Verify C++ Classes” (Polyspace Code Prover Server)

2 Analysis Options

2-186

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace must verify only methods of classes that you specify using the option Class
(-class-analyzer).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-187 for other options that you must also
enable.

Command line: Use the option -class-only. See “Command-Line Information” on page 2-188.

Why Use This Option

Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

When you analyze a module or library, Code Prover generates a main function if one does not exist.
The main function calls class methods using these two options and functions that are not class
methods using other options. Code Prover analyzes these methods and functions for robustness to all
inputs. If you use this option, Code Prover analyzes the methods only.

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if the
functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.

 Analyze class contents only (-class-only)

2-187

• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace verifies
methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-class-only
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -class-only

See Also
Class (-class-analyzer) | Functions to call within the specified classes (-
class-analyzer-calls) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Analysis Options

2-188

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-190 for other options that you must also
enable.

Command line: Use the option -functions-called-before-main. See “Command-Line
Information” on page 2-190.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-calls) to specify
which functions the generated main must call. Unless a function is called directly or indirectly from
main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify the
function prototype with arguments. For instance, in the following code, you must specify the
prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

 Initialization functions (-functions-called-before-main)

2-189

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this function.
• Not a class method: The generated main calls this function before calling class methods.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover Verification
and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in arbitrary order. If
you want to call your initialization functions in a specific order, manually write a main function to call
them.

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example 1 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myfunc
Example 2 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myClass::init(int)
Example 1 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myfunc
Example 2 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myClass::init(int)

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) | Functions
to call within the specified classes (-class-analyzer-calls) | Variables to
initialize (-main-generator-writes-variables) | Verify module or library (-
main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Analysis Options

2-190

Verify initialization section of code only (-init-
only-mode)
Check initialization code alone for run-time errors and other issues

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check only the section of code marked as initialization code for run-time
errors and other issues.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line: Use the option -init-only-mode. See “Command-Line Information” on page 2-
193.

Why Use This Option

Often, issues in the initialization code can invalidate the analysis of the remaining code. You can use
this option to check the initialization code alone and fix the issues, and then disable this option to
verify the remaining program.

For instance, in this example:

#include <limits.h>

int aVar;
const int aConst = INT_MAX;
int anotherVar;

int main() {
 aVar = aConst + 1;
#pragma polyspace_end_of_init
 anotherVar = aVar - 1;
 return 0;
}

the overflow in the line aVar = aConst+1 must be fixed first before the value of aVar is used in
subsequent code.

 Verify initialization section of code only (-init-only-mode)

2-191

Settings
 On

Polyspace checks the code from the beginning of main and continues up to the pragma
polyspace_end_of_init.

 Off (default)
Polyspace checks the complete application beginning from the main function.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• Use this option along with the option Check that global variables are initialized

after warm reboot (-check-globals-init) to thoroughly check the initialization code
before checking the remaining program. If you use both options, the verification checks for the
following:

• Definite or possible run-time errors in the initialization code.
• Whether all non-const global variables are initialized along all execution paths through the

initialization code.
• Multitasking options are disabled if you check initialization code only because the initialization of

global variables is expected to happen before the tasks (threads) begin. As a result, task bodies
are not verified.

See also “Multitasking”.
• If you check initialization code only, the analysis truncates execution paths containing the pragma

at the location of the pragma but continues to check other execution paths.

For instance, in this example, the pragma appears in an if block. A red non-initialized variable
check appears on the line int a = var because the path containing the initialization stops at the
location of the pragma. On the only other remaining path that bypasses the if block, the variable
var is not initialized.

int var;

int func();

2 Analysis Options

2-192

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

To avoid these situations, try to place the pragma outside a block. See other suggestions for
placement of the pragma in the reference for Check that global variables are
initialized after warm reboot (-check-globals-init).

• To determine the initialization of a structure, a regular Code Prover analysis only considers fields
that are used.

If you check initialization code only using this option, the analysis covers only a portion of the
code and cannot determine if a variable is used beyond this portion. Therefore, the checks for
initialization consider all structure fields, whether used or not.

Command-Line Information
Parameter: -init-only-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -init-only-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
init-only-mode

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2020a

 Verify initialization section of code only (-init-only-mode)

2-193

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace verification must stop if a main function is not present in the source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which function must
be considered as main. See Main entry point (-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line: There is no corresponding command-line option. See “Command-Line Information”
on page 2-194.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the source files. If a
main is not present, it generates a file __polyspace_main.c that contains a main function.

Tips
If you use this option, your code must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use the option Verify module or library (-
main-generator) to generate a main function.

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does not find a
main function in the source files. If you specify the option -main-generator, Polyspace generates a
main if it cannot find one in the source files.

See Also
Show global variable sharing and usage only (-shared-variables-mode) | Verify
module or library (-main-generator)

2 Analysis Options

2-194

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)
“Verify C++ Classes” (Polyspace Code Prover Server)

 Verify whole application

2-195

Show global variable sharing and usage only (-
shared-variables-mode)
Compute global variable sharing and usage without running full analysis

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify this option to run a less extensive analysis that computes the global variable sharing and
usage in your entire application. The analysis does not verify your code for run-time errors. The
analysis results also include coding standards violations if you enable coding standards checking, and
code metrics if you enable code metrics computation.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line: Use the option -shared-variables-mode. See “Command-Line Information” on
page 2-197.

Why Use This Option

You can see global variable sharing and usage without running a full analysis on your entire
application that includes run-time error detection. Run-time error detection on an entire application
can take a long time.

Settings
 On

Polyspace computes global variable sharing and usage but does not verify your code for run-time
errors.

 Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies
• You can use this option only if your program contains a main function and you enable the option

Verify whole application (implicitly set by default at command line).
• When you enable this option, you must also enable at least one of these options.

•
•
•

2 Analysis Options

2-196

•
•
•

Tips
• After you analyze your complete application to see global variable sharing and usage, run a

component-by-component Code Prover analysis to detect run-time errors.
• In the desktop product, you can see all read and write operations on global variables in the

“Variable Access” (Polyspace Code Prover) pane.
• In this less extensive analysis mode, the analysis checks for most but not all coding standards

violations, and computes most but not all code metrics.

Command-Line Information
Parameter: -shared-variables-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -shared-
variables-mode -enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
shared-variables-mode -enable-concurrency-detection

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2019b

 Show global variable sharing and usage only (-shared-variables-mode)

2-197

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the function that you want to use as main. If the function does not exist, the verification stops
with an error message. Use this option to specify Microsoft Visual C++ extensions of main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-198 for other options that you must also
enable.

Command line: Use the option -main. See “Command-Line Information” on page 2-199.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application.

2 Analysis Options

2-198

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example (Code Prover): polyspace-code-prover -sources file_name -compiler
visual14.0 -main _tmain
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
compiler visual14.0 -main _tmain

See Also
Verify module or library (-main-generator) | Verify whole application

Topics
“Prepare Scripts for Polyspace Analysis”

 Main entry point (-main)

2-199

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call. The main calls these functions after the
ones you specify through the option Initialization functions (-functions-called-
before-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-201 for other options that you must also
enable.

Command line: Use the option -main-generator-calls. See “Command-Line Information” on
page 2-201.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-called-
before-main) to specify which functions the generated main must call. Unless a function is called
directly or indirectly from main, the software does not analyze the function.

Settings
Default: unused

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code. It does not
call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

2 Analysis Options

2-200

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-generator).

Tips
• Select unused when you use Code Prover Verification > Verify files independently.
• If you want the generated main to call an inlined function, select custom and specify the name of

the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your functions in a
specific order, manually write a main function to call them.

• To specify instantiations of templates as arguments, run analysis once with the option argument
all. Search for the template name in the analysis log and use the template name as it appears in
the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}
template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax in the
analysis log. You see the function format:

T1 getMax<int>(T1, T1)

To call only this template instantiation, remove the space between the arguments and use the
option:

-main-generator-calls custom="T1 getMax<int>(T1,T1)"

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-calls all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-calls all

 Functions to call (-main-generator-calls)

2-201

See Also
Class (-class-analyzer) | Functions to call within the specified classes (-
class-analyzer-calls) | Initialization functions (-functions-called-before-
main) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

2 Analysis Options

2-202

Variables to initialize (-main-generator-writes-
variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify global variables that you want the generated main to initialize. Polyspace considers these
variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-204 for other options that you must also
enable.

Command line: Use the option -main-generator-writes-variables. See “Command-Line
Information” on page 2-204.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

• C code — public
• C++ Code — uninit

uninit
C++ Only

The generated main only initializes global variables that you have not initialized during
declaration.

none
The generated main does not initialize global variables.

public
The generated main initializes all global variables except those declared with keywords static
and const.

all
The generated main initializes all global variables except those declared with keyword const.

 Variables to initialize (-main-generator-writes-variables)

2-203

custom

The generated main only initializes global variables that you specify. Click to add a field.
Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of global
variables (-no-def-init-glob). Global variables are considered as uninitialized until you
explicitly initialize them in the code.

Tips
This option only affects global variables that are defined in the project. If a global variable is declared
as extern, the analysis considers that the variable can have any value allowed by its data type,
irrespective of the value of this option.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-writes-variables all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

2 Analysis Options

2-204

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-205 for other options that you must also
enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 2-206.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses the
functions check_NIV() and check_NIP() in the generated main to perform these checks. It
checks for initialization of:

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-analyzer) option.

 Skip member initialization check (-no-constructors-init-check)

2-205

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-no-constructors-init-check
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -no-constructors-init-check

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Analysis Options

2-206

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that each source file must be verified independently of other source files. Each file is verified
individually, independent of other files in the module. Verification results can be viewed for the entire
project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace desktop
products, you can see a summary of results for all files on the Dashboard pane. You can open the
results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results folder. The
subfolder has the same name as the source file being analyzed.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-207 for other options that you must also
enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on page 2-208.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files.

For instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-generator).

 Verify files independently (-unit-by-unit)

2-207

Tips
• Code Prover requires a main function as the starting point of verification. In the file-by-file mode,

because most files do not have a main, Code Prover generates a main function when required. By
default, the generated main calls uncalled functions (uncalled non-private methods and out-of-
class functions in C++). For more information, see:

• “Verify C Application Without main Function” (Polyspace Code Prover Server)
• “Verify C++ Classes” (Polyspace Code Prover Server)

• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file verification. After

the verification is complete for a file, you can view the results while other files are still being
verified.

• You can generate a report of the verification results for each file or for all the files together. To
generate a single report for all files, perform the report generation after verification (and not
along with verification using analysis options).

• When you perform a file-by-file verification, you can see many instances of unused variables. Some
of these variables might be used in other files but show as unused in a file-by-file verification.

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -unit-by-unit
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-208

Common source files (-unit-by-unit-common-
source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

For a file by file verification, specify files that you want to include with each source file verification.
These files are compiled once, and then linked to each verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-209 for other options that you must also
enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 2-210.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files. For
instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information present in the
other files. Place the missing information in a common file and use this option to specify the file for
verification. For instance, if multiple source files call the same function, use this option to specify a
file that contains the function definition or a function stub. Otherwise, Polyspace uses its own stubs
for functions that are called but not defined in the source files. The assumptions behind the Polyspace
stubs can be broader than what you want, leading to orange checks.

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to navigate to the
file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-unit).

 Common source files (-unit-by-unit-common-source)

2-209

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -unit-by-unit -
unit-by-unit-common-source definitions.c
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-210

Verify model generated code (-main-generator)
Specify that a main function must be generated if it is not present in source files

Description
In Bug Finder, use this option only for code generated from MATLAB code or Simulink models.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on page 2-
211.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic code that
executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-loop).
• Calls the functions specified by Initialization functions (-functions-called-before-

loop).

The main then performs the following functions in the loop:

• Calls the functions specified by Step functions (-functions-called-in-loop).
• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-functions-
called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator ...
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator ...
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator ...
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator ...

 Verify model generated code (-main-generator)

2-211

See Also
Initialization functions (-functions-called-before-loop) | Inputs (-variables-
written-in-loop) | Parameters (-variables-written-before-loop) | Step functions
(-functions-called-in-loop) | Termination functions (-functions-called-after-
loop) | Verify model generated code (-main-generator)

2 Analysis Options

2-212

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node.

Command line: Use the option -functions-called-before-loop. See “Command-Line
Information” on page 2-213.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Tips
• If you specify a function for the option Termination functions (-functions-called-

after-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-before-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-before-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-loop myfunc

 Initialization functions (-functions-called-before-loop)

2-213

See Also
Step functions (-functions-called-in-loop) | Termination functions (-functions-
called-after-loop) | Verify model generated code (-main-generator)

2 Analysis Options

2-214

Step functions (-functions-called-in-loop)
Specify functions that the generated main must call in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node.

Command line: Use the option -functions-called-in-loop. See “Command-Line Information”
on page 2-215.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain functions for the
options Initialization functions or Termination functions, the generated main does not call
those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions (-functions-
called-before-loop) or Termination functions (-functions-called-after-loop), to
call it inside the cyclic code, use custom and specify the function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-in-loop all

 Step functions (-functions-called-in-loop)

2-215

Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-in-loop all

See Also
Initialization functions (-functions-called-before-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code (-main-
generator)

2 Analysis Options

2-216

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call after the cyclic code ends.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node.

Command line: Use the option -functions-called-after-loop. See “Command-Line
Information” on page 2-217.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::myMethod(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions (-functions-called-

before-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-after-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-after-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-after-loop myfunc

 Termination functions (-functions-called-after-loop)

2-217

See Also
Initialization functions (-functions-called-before-loop) | Step functions (-
functions-called-in-loop) | Verify model generated code (-main-generator)

2 Analysis Options

2-218

Parameters (-variables-written-before-loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize before the cyclic code loop begins. Before
the loop begins, Polyspace considers these variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node.

Command line: Use the option -variables-written-before-loop. See “Command-Line
Information” on page 2-219.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-before-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-before-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-before-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Verify model generated code (-main-
generator)

 Parameters (-variables-written-before-loop)

2-219

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize at the beginning of every iteration of the
cyclic code loop. At the beginning of every loop iteration, Polyspace considers these variables to have
any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node.

Command line: Use the option -variables-written-in-loop. See “Command-Line Information”
on page 2-220.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-in-loop all

2 Analysis Options

2-220

See Also
Parameters (-variables-written-before-loop) | Verify model generated code (-
main-generator)

 Inputs (-variables-written-in-loop)

2-221

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on page 2-
223.

For the analogous option for model generated code, see Verify model generated code (-
main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires a main
function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If a main
exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The generated
main:

1 Initializes variables specified by Variables to initialize (-main-generator-
writes-variables).

2 Before calling other functions, calls the functions specified by Initialization functions
(-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-main-
generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and Functions
to call within the specified classes (-class-analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and static.
• In all possible orders, calls all functions that are not called anywhere in the source files.

Polyspace considers that global variables can be written between two consecutive function
calls. Therefore, in each called function, global variables initially have the full range of values
allowed by their type.

2 Analysis Options

2-222

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main function,

irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you use the option Verify whole application (default on the command line), your code

must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use this option to generate a main function.
• If you specify multitasking options, the verification ignores your specifications for main

generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace Multitasking
Analysis Manually”.

Command-Line Information
Parameter: -main-generator
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) | Functions
to call within the specified classes (-class-analyzer-calls) | Initialization
functions (-functions-called-before-main) | Variables to initialize (-main-
generator-writes-variables) | Verify whole application

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

 Verify module or library (-main-generator)

2-223

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a structure.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See “Command-
Line Information” on page 2-226.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change between
successive operations even if you do not explicitly change it in your code. For instance, if var is a
volatile variable, the consecutive operations res = var; res =var; can result in two different
values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure fields. If you
select this option, the software assumes that a volatile structure field has a full range of values at
any point in the code. The range is determined only by the data type of the structure field.

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all values
allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation, the variable
read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

2 Analysis Options

2-224

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the variable read
results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not expect their

values to change between successive operations, disable this option. You are using the volatile
qualifier for some other reason and the verification does not need to consider full range for the
field values.

• If you enable this option, the number of red, gray, and green checks in your code can decrease.
The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes away when
the option is used. Considering the volatile qualifier changes the check color. These examples
use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

2-225

Color
Without
Option

Result Without Option Result With Option

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -consider-
volatile-qualifier-on-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
consider-volatile-qualifier-on-fields

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

2 Analysis Options

2-226

Float rounding mode (-float-rounding-mode)
Specify rounding modes to consider when determining the results of floating point arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point arithmetic.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line Information” on
page 2-229.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify a rounding
mode other than round-to-nearest. Although the verification ignores the fesetround specification, it
considers all rounding modes including the rounding mode that you specified. Alternatively, for
targets that can use extended precision (for instance, using the flag -mfpmath=387), use the
rounding mode all. However, for your Polyspace analysis results to agree with run-time behavior,
you must prevent use of extended precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding modes are
considered when you specify all, you can have many orange Overflow checks resulting from
overapproximation.

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-point variables.
The following rounding modes are considered: round-to-nearest, round-towards-zero, round-
towards-positive-infinity, and round-towards-negative-infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754 standard.

For instance, the arithmetic uses floating point instructions present in the SSE instruction set. The
GNU C flag -mfpmath=sse enforces use of this instruction set. If you use the GNU C compiler

 Float rounding mode (-float-rounding-mode)

2-227

http://www.cplusplus.com/reference/cfenv/fesetround/

with this flag to compile your code, your Polyspace analysis results agree with your run-time
behavior.

However, if your code uses extended precision, for instance using the GNU C flag -mfpmath=387,
your Polyspace analysis results might not agree with your run-time behavior in some corner cases.
See some examples of these corner cases in codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a flag such as -
ffloat-store. For your Polyspace analysis, use all for rounding mode to account for double
rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the following table
shows the difference in the result of the check when you change your rounding modes.

2 Analysis Options

2-228

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1 is just
large enough that the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX. The Overflow check is red.

• In the second addition operation, eps2 is
just small enough that the value nearest to
FLT_MAX + eps2 is FLT_MAX. The
Overflow check is green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow check
also considers other rounding modes.

• In the first addition operation, in to-nearest
mode, the value nearest to FLT_MAX +
eps1 is greater than FLT_MAX, so the
addition overflows. But if rounded towards
negative infinity, the result is FLT_MAX, so
the addition does not overflow. Combining
these two rounding modes, the Overflow
check is orange.

• In the second addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so the
addition does not overflow. But if rounded
towards positive infinity, the result is
greater than FLT_MAX, so the addition
overflows. Combining these two rounding
modes, the Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to determine how the
overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example (Code Prover): polyspace-code-prover -sources file_name -float-rounding-
mode all

 Float rounding mode (-float-rounding-mode)

2-229

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
float-rounding-mode all

See Also
Overflow

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

2 Analysis Options

2-230

Respect types in fields (-respect-types-in-
fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line Information” on
page 2-232.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not be cast to
pointers later.

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned off, Polyspace allows the
cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization of
var through the pointer (int*)S.x1 and
produces a red Non-initialized local
variable error when var is read.

 Respect types in fields (-respect-types-in-fields)

2-231

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they are not
declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-fields

See Also
Non-initialized local variable | Respect types in global variables (-respect-
types-in-globals)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-232

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line Information”
on page 2-234.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will not be cast to
pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they are not
declared as pointers.

Tips
If you select this option, the number of checks in your code can change. You can use this option and
the change in results to identify cases where you cast nonpointer variables to pointers.

For instance, in the following example, when you select the option, the results have one less orange
check and one more red check.

 Respect types in global variables (-respect-types-in-globals)

2-233

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned on, Polyspace ignores the cast. Therefore,
it ignores the initialization of local through the
pointer (int*)global and produces a red Non-
initialized local variable error when local is
read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-globals
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-globals

See Also
Non-initialized local variable | Respect types in fields (-respect-types-in-
fields)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-234

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained otherwise

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that the verification must consider environment pointers as unsafe unless otherwise
constrained. Environment pointers are pointers that can be assigned values outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you override a
function definition by using the option Functions to stub (-functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library does not
have an explicit call to the function. You can also force a function call to be generated with the
option Functions to call (-main-generator-calls).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-Line
Information” on page 2-237.

Why Use This Option

Use this option so that the verification makes more conservative assumptions about pointers from
external sources.

If you specify this option, the verification considers that environment pointers can have a NULL value.
If you read an environment pointer without checking for NULL, the Illegally dereferenced pointer
check shows a potential error in orange. The message associated with the orange check shows the
pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-235

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete code for
verification. Even if an orange check originates from external sources, you are likely to place
protections against unsafe pointers from such sources. For instance, if you obtain a pointer from
an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors originating
from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover assumes that
pointer arguments to runnables and pointers returned from Rte_ functions are not NULL. You
cannot use this option to change the assumption. See “Run Polyspace on AUTOSAR Code with
Conservative Assumptions” (Polyspace Code Prover).

• If you enable this option, the number of orange checks in your code might increase.

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer check is
green. The verification assumes that env_ptr
is not NULL and any dereference is within
allowed bounds. The verification assumes that
the result of the dereference is full range. For
instance, in this case, the return value has the
full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer check is
orange. The verification assumes that
env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr is not
NULL. The if condition is always true and the
else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr can be
NULL. The if condition is not always true and
the else block can be reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually constrain
some of the environment pointers. See the description of Initialize Pointer in “External
Constraints for Polyspace Analysis” (Polyspace Code Prover).

2 Analysis Options

2-236

When you individually constrain a pointer, you first specify an Init Mode, and then specify
through the Initialize Pointer option whether the pointer is Null, Not Null, or Maybe Null.
Depending on the Init Mode, you can either override the global specification for all environment
pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for Initialize
Pointer overrides your specification for this option. For instance, if you specify Not NULL for
an environment pointer ptr, the verification assumes that ptr is not NULL even if you specify
that environment pointers must be considered unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your specification for this
option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not available. If
you override the global specification for such a pointer through the Initialize Pointer option
in constraints, you cannot toggle back to the global specification without changing the
Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer depths are
valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -stubbed-
pointers-are-unsafe
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stubbed-pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify External Constraints”
“External Constraints for Polyspace Analysis”

Introduced in R2016b

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-237

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -allow-negative-operand-in-shift. See “Command-Line
Information” on page 2-238.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative number is
undefined. Following the standard, the verification produces a red check on left shifts of negative
numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this option. Note
that allowing left shifts of negative numbers can reduce the cross-compiler portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.

 Off (default)
If a shift operation is performed on a negative number, the verification generates an error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-negative-
operand-in-shift
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-negative-operand-in-shift

See Also
Invalid shift operations

2 Analysis Options

2-238

Topics
“Prepare Scripts for Polyspace Analysis”

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

2-239

Consider non finite floats (-allow-non-finite-
floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point operations.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line Information” on
page 2-242.

Why Use This Option
Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the analysis
terminates the execution thread where a division by zero occurs and does not consider that the result
could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your code, set
this option. When you set this option and a division by zero occurs for instance, the execution thread
continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in your code.
Using the option alone effectively disables many numerical checks on floating point operations. If you
have generally accounted for infinities and NaNs, but you are not sure that you have considered all
situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.
• NaNs (-check-nan): Use warn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By default, a
Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as infinities and
NaNs.

2 Analysis Options

2-240

By using options Infinities (-check-infinite) and NaNs (-check-nan), you can
choose to highlight operations that produce nonfinite results and stop the execution threads
where the nonfinite results occur. These options are not available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have any value
allowed by their type, including infinite or NaN. Floating-point variables with unknown values
include volatile variables and return values of stubbed functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that produces an
infinity or a NaN as the only possible result on all execution paths. The verification produces
an orange check on a floating-point operation that can potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown values are full-
range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead code.

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you can handle

certain numerical exceptions without aborting the code. Some implementations of the C standard
support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in your code,
use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative action.
Therefore, you do not want the verification to highlight division operations that result in
infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for them
explicitly in your code, use this option so that the verification incorporates infinities and NaNs.
Use the options -check-nan and -check-infinite with argument warn so that the
verification highlights operations that result in infinities and NaNs, but does not stop the
execution thread. These options are not available for a Bug Finder analysis.

• If you run a Code Prover analysis and use this option, checkers for overflow, division by zero and
other numerical run-time errors are disabled. See “Numerical Checks” (Polyspace Code Prover
Access).

If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical Defects”
(Polyspace Bug Finder Access).

• The checker Floating point comparison with equality operators can show false
positives.

• If you select this option, the number and type of Code Prover checks in your code can change.

For instance, in the following example, when you select the option, the results have one less red
check and three more green checks.

 Consider non finite floats (-allow-non-finite-floats)

2-241

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by zero
error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover does not
check for a Division by zero error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by zero
results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace user
interface, if you place your cursor on y and z,
you can see the nonfinite values Inf and NaN
respectively in the tooltip.

• You cannot run the Automatic Orange Tester in Code Prover if you incorporate non-finites in your
analysis.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -allow-non-finite-
floats
Example (Code Prover): polyspace-code-prover -sources file_name -allow-non-
finite-floats
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
allow-non-finite-floats
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-non-finite-floats

See Also
“Numerical Defects” (Polyspace Bug Finder Access) | “Numerical Checks” (Polyspace Code Prover
Access) | Infinities (-check-infinite) | NaNs (-check-nan)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

2 Analysis Options

2-242

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 2-244 for other options you must also enable.

Command line: Use the option -check-infinite. See “Command-Line Information” on page 2-
244.

Why Use This Option

Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
 double x=1.0/0.0;
 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is infinite when the operands themselves are not infinite. The verification does not
terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible result on all
execution paths and the operands themselves are never infinite, the check is red. If the operation
can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;

 Infinities (-check-infinite)

2-243

 return x;
}

Even though the Overflow check on the / operation is red, the verification continues. For
instance, a green Non-initialized local variable check appears on x in the return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces infinity.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For instance, a Non-
initialized local variable check does not appear on x in the return statement.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-infinite
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-nan)

Polyspace Results
Overflow

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

2 Analysis Options

2-244

Check that global variables are initialized after
warm reboot (-check-globals-init)
Check that global variables are assigned values in designed initialization code

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check whether all non-const global variables (and local static variables)
are explicitly initialized at declaration or within a section of code marked as initialization code.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -check-globals-init. See “Command-Line Information” on page
2-248.

Why Use This Option

In a warm reboot, to save time, the bss segment of a program, which might hold variable values from
a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all non-const
variables without default values before execution. You can use this option to delimit the initialization
code and verify that all non-const global variables are indeed initialized in a warm reboot.

For instance, in this simple example, the global variable aVar is initialized in the initialization code
section but the variable anotherVar is not.

int aVar;
const int aConst = -1;
int anotherVar;

int main() {
 aVar = aConst;
#pragma polyspace_end_of_init
 return 0;
}

 Check that global variables are initialized after warm reboot (-check-globals-init)

2-245

Settings
 On

Polyspace checks whether all global variables are initialized in the designated initialization code.
The initialization code starts from the beginning from main and continues up to the pragma
polyspace_end_of_init.

The results are reported using the check Global variable not assigned a value in
initialization code.

 Off (default)
Polyspace does not check for initialization of global variables in a designated code section.

However, the verification continues to check if a variable is initialized at the time of use. The
results are reported using the check Non-initialized variable.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Disable checks for non-initialization (-disable-initialization-checks)
• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• You can use this option along with the option Verify initialization section of code

only (-init-only-mode) to check the initialization code before checking the remaining
program.

This approach has the following benefits compared to checking the entire code in one run:

• Run-time errors in the initialization code can invalidate analysis of the remaining code. You can
run a comparatively quicker check on the initialization code before checking the remaining
program.

• You can review results of the checker Global variable not assigned a value in
initialization code relatively easily.

Consider this example. There is an orange check on var because var might remain
uninitialized when the if and else if statements are skipped.

int var;

2 Analysis Options

2-246

int checkSomething(void);
int checkSomethingElse(void);

int main() {
 int local_var;
 if(checkSomething())
 {
 var=0;
 }
 else if(checkSomethingElse()) {
 var=1;
 }
 #pragma polyspace_end_of_init
 var=2;
 local_var = var;
 return 0;
}

To review this check and understand when x might be non-initialized, you have to browse
through all instances of x on the Variable Access pane. If you check the initialization code
alone, only the code in bold gets checked and you have to browse through only the instances in
the initialization code.

• The check is only as good as your placement of the pragma polyspace_end_of_init. For
instance:

• Place the pragma only after initialization code ends.

Otherwise, a variable might appear falsely uninitialized.
• Try to place the pragma directly in the main function, that is, outside a block. If you place the

pragma in a block, the check considers only those paths that end in the block.

All paths that end in the block might have a variable initialized but paths that skip the block
might let the variable go uninitialized. If you do place the pragma in a block, make sure that it
is okay if a variable stays uninitialized outside the block.

For instance, in this example, the variable var is initialized on all paths that end at the location
of the pragma. The check is green despite the fact that the if block might be skipped, letting
the variable go uninitialized.

int var;

int func();

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

The issue is detected by the checker if you place the pragma after the if block ends.

 Check that global variables are initialized after warm reboot (-check-globals-init)

2-247

• Do not place the pragma in a loop.

If you place the pragma in a loop, you can see results that are difficult to interpret. For
instance, in this example, both aVar and anotherVar are initialized in one iteration of the
loop. However, the pragma only considers the first iteration of the loop when it shows a green
check for initialization. If a variable is initialized on a later iteration, the check is orange.

int aVar;
int anotherVar;

void main() {
 for(int i=0; i<=1; i++) {
 if(i == 0)
 aVar = 0;
 else
 anotherVar = 0;
 #pragma polyspace_end_of_init
 }
}

The check is red if you verify initialization code alone and do not initialize a variable in the first
loop iteration. To avoid these incorrect red or orange checks, do not place the pragma in a
loop.

• To determine the initialization of a structure, a regular Code Prover analysis only considers
fields that are used.

If you check initialization code only using the option Verify initialization section of
code only (-init-only-mode), the analysis covers only a portion of the code and cannot
determine if a variable is used beyond this portion. Therefore, the checks for initialization
consider all structure fields, whether used or not.

Command-Line Information
Parameter: -check-globals-init
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -check-globals-
init
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-globals-init

See Also
Verify initialization section of code only (-init-only-mode)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2020a

2 Analysis Options

2-248

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 2-250 for other options you must also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page 2-250.

Why Use This Option

Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is NaN when the operands themselves are not NaN. For instance, the check flags the
operation val1 + val2 only if the result can be NaN when both val1 and val2 are not NaN.
The verification does not terminate the execution thread that produces NaN.

If the verification detects an operation that produces NaN as the only possible result on all
execution paths and the operands themselves are never NaN, the check is red. If the operation
can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on floats check for
NaN.

 NaNs (-check-nan)

2-249

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the verification
continues. For instance, a green Non-initialized local variable check appears on y in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces NaN.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats check for
NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

The verification stops because the Invalid operation on floats check on the - operation is red.
For instance, a Non-initialized local variable check does not appear on y in the return
statement.

The Invalid operation on floats check for NaN also appears on the / operation and is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-nan
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-check-
infinite)

2 Analysis Options

2-250

Polyspace Results
Invalid operation on floats

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 NaNs (-check-nan)

2-251

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as it points
within the structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-253 for other options you must also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line Information”
on page 2-253.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a pointer to a
structure field, you can perform pointer arithmetic and use the result to access another structure
field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the field as long
as it points within the structure. For instance, in the following code, unless you use this option,
the verification will produce a red Illegally dereferenced pointer check:

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior occurs

irrespective of whether you choose the option Enable pointer arithmetic across fields.
• Using this option can slightly increase the number of orange checks. The option relaxes the

constraint that a pointer to a structure field cannot point to other fields of the structure. In

2 Analysis Options

2-252

exchange for relaxing this constraint, the verification loses precision on the boundary of fields
within a structure and treats the structure as a whole. Pointer dereferences that were previously
green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to work around
red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different fields of a
structure.

Unlike an array, members of a structure can have different data types. For efficient storage,
structures use padding to accommodate this difference. When you increment a pointer pointing to
a structure member, you might not point to the next member. When you dereference this pointer,
you cannot rely on what you are reading or writing to.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-ptr-
arith-on-struct
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-bytes) |
Illegally dereferenced pointer

Topics
“Prepare Scripts for Polyspace Analysis”

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

2-253

Detect stack pointer dereference outside scope (-
detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its scope via
pointers. Such an access can happen, for example, when a function returns a pointer to a local
variable and you dereference the pointer outside the function. The dereference causes undefined
behavior because the local variable that the pointer points to does not live outside the function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -detect-pointer-escape. See “Command-Line Information” on
page 2-255.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its usual
specifications. When you dereference a pointer, the check also determines if you are accessing a
variable outside its scope through the pointer. The check is:

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice in your
code. In both calls, when you perform the dereference *ptr, ptr is pointing to variables
outside their scope. Therefore, the Illegally dereferenced pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed outside their
scope.

• Green, if none of the variables that the pointer points to are accessed outside their scope, and
other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red Illegally
dereferenced pointer check on *ptr. Otherwise, the Illegally dereferenced pointer check on
*ptr is green.

void func2(int *ptr) {
 *ptr = 0;
}

2 Analysis Options

2-254

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside its scope.

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not check for
whether you are accessing a variable outside its scope. The check is green even if the pointer
dereference is outside the variable scope, as long as it satisfies these requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Tips
The detection of stack pointer deference outside scope does not apply to certain types of pointers. For
specific limitations, see “Limitations of Polyspace Verification” (Polyspace Code Prover).

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -detect-pointer-
escape
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
detect-pointer-escape

See Also
Illegally dereferenced pointer

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2015a

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

2-255

Disable checks for non-initialization (-disable-
initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -disable-initialization-checks. See “Command-Line
Information” on page 2-257.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before being read.
• Non-initialized variable: Variable other than local variable is not initialized before

being read.
• Non-initialized pointer: Pointer is not initialized before being read.
• Return value not initialized: C function does not return value when expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software displays red
checks if, for instance, a variable is not initialized and orange checks if a variable is initialized
only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:2004 rule 9.1,

and MISRA C:2012 Rule 9.1.

2 Analysis Options

2-256

• If you select this option, the number and type of orange checks in your code can change.

For instance, the following table shows an additional orange check with the option enabled.

Checks for Non-initialization Enabled Checks for Non-initialization Disabled
void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the else
branch of the if statement exists.

• A green Non-initialized local variable
check on var1 in the last statement. var1
has the assigned value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized local
variable checks. At initialization, the
software assumes that var2 has full range
of int values. Following the if statement,
because the software considers both if
branches, it assumes that var1 also has
full range of int values.

• Produces an orange Overflow check on the
+ operation. For instance, if var1 has the
maximum int value, adding 1 to it can
cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -disable-
initialization-checks
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
disable-initialization-checks

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Disable checks for non-initialization (-disable-initialization-checks)

2-257

Permissive function pointer calls (-permissive-
function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the function pointer
does not match the type of the function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-260 for other options you must also enable.

Command line: Use the option -permissive-function-pointer. See “Command-Line
Information” on page 2-260.

Why Use This Option

By default, Code Prover does not recognize calls through function pointers when a type mismatch
occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via function pointers

are not recognized.

Settings
 On

The verification must allow function pointer calls where the type of the function pointer does not
match the type of the function. For instance, a function declared as int f(int*) can be called
by a function pointer declared as int (*fptr)(void*).

Only type mismatches between pointer types are allowed. Type mismatches between nonpointer
types cause compilation errors. For instance, a function declared as int f(int) cannot be
called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer and the
function it calls are identical.

Type mismatches are detected with the check Correctness condition.

2 Analysis Options

2-258

Tips
• With sources that use function pointers extensively, enabling this option can cause loss in

performance. This loss occurs because the verification has to consider more execution paths.
• Using this option can increase the number of orange checks. Some of these orange checks can

reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer type and the
function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer to a three-
element array. However, it points to a function whose corresponding argument is a pointer to a
four-element array. In the body of foo, four array elements are read and incremented. The
fourth element does not exist and the ++ operation reads a meaningless value.

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the call
obj_fptr(&ptr) and the function foo is not verified. If you use this option, the body of foo
contains several orange checks. Review the checks carefully and make sure that the type
mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a structure with
three float members. However, the corresponding function argument is a pointer to an
unrelated structure with one array member. In the function body, the strlen function is used
assuming the array member. Instead the strlen call reads the float members and can read
meaningless values, for instance, values stored in the structure padding.

 Permissive function pointer calls (-permissive-function-pointer)

2-259

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the call
obj_fptr(&pt) and the function foo is not verified. If you use this option, the function
contains an orange check on the strlen call. Review the check carefully and make sure that
the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
permissive-function-pointer
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
lang c -permissive-function-pointer

See Also
Correctness condition

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-260

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps the result
of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line: Use the option -signed-integer-overflows. See “Command-Line Information”
(Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 2147483646] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

 Overflow mode for signed integer (-signed-integer-overflows)

2-261

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

allow
Polyspace does not flag signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [-231..2] or [2..231-2] and the value of i wraps around
to -231.

2 Analysis Options

2-262

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [-231..2] or [2..231-2] after the
overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

 Overflow mode for signed integer (-signed-integer-overflows)

2-263

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with signed constants,
use the Polyspace Bug Finder checker Integer constant overflow.

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example (Code Prover): polyspace-code-prover -sources file_name -signed-integer-
overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
signed-integer-overflows allow

See Also
Overflow | Overflow mode for unsigned integer (-unsigned-integer-overflows)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-264

Introduced in R2018b

 Overflow mode for signed integer (-signed-integer-overflows)

2-265

Overflow mode for unsigned integer (-unsigned-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis wraps the
result of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line: Use the option -unsigned-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for unsigned integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 4294967294] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

2 Analysis Options

2-266

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For instance,
MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C (ISO C++) standard.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [0..232-2]] and the value of i wraps around to 0.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-267

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow. For instance, MAX_INT + 1
wraps to MIN_INT.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [0 .. 4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

2 Analysis Options

2-268

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with unsigned constants,
use the Polyspace Bug Finder checker Unsigned integer constant overflow.

Command-Line Information
Parameter: -unsigned-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -unsigned-
integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unsigned-integer-overflows allow

See Also
Overflow | Overflow mode for signed integer (-signed-integer-overflows)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2018b

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-269

Allow incomplete or partial allocation of structures
(-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure but has a
sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a larger
structure. The pointer resulting from the cast has sufficient buffer for only some fields of the larger
structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on page 2-271.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a structure
even when the buffer allowed for the pointer is not sufficient for all the structure fields.

Settings
 On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce an Illegally
dereferenced pointer error, as long as the dereference occurs within allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two fields of the
structure BIG. Therefore, with the option on, Polyspace considers that the first two dereferences
are valid. The third dereference takes p outside its allowed buffer. Therefore, Polyspace produces
an Illegally dereferenced pointer error on the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;
 p->c = 0 ; // Red IDP check

2 Analysis Options

2-270

 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not have
sufficient buffer for all fields of the structure. It produces an Illegally dereferenced pointer
error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for the first
two fields of the structure BIG, Polyspace considers that dereferencing p is invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated structure.

For instance, in the preceding example, if you do not turn on the option and perform the
assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces an
Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -size-in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct) |
Illegally dereferenced pointer

Topics
“Prepare Scripts for Polyspace Analysis”

 Allow incomplete or partial allocation of structures (-size-in-bytes)

2-271

Subnormal detection mode (-check-subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -check-subnormal. See “Command-Line Information” on page 2-
274.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the significand. The presence of subnormal numbers indicates
loss of significant digits. This loss can accumulate over subsequent operations and eventually result
in unexpected values. Subnormal numbers can also slow down the execution on targets without
hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents subnormal
values from propagating further. Therefore, in practice, you see only the first occurrence of the
subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of subnormal values.
Even if a subnormal result comes from previous subnormal values, the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of subnormal
values. If a subnormal value propagates to further subnormal results, those subsequent results
are not highlighted.

2 Analysis Options

2-272

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-subnormal

operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results from certain operations. If you use the warn-first mode, the first operation causing the
subnormal result is highlighted.

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1 and
arg2 are sufficiently close. The first two
checks for subnormal results are orange.
val1 and val2 cannot be subnormal unless
difference1 and difference2 are
subnormal. The last two checks for subnormal
results are green.

Through red/orange checks, you see only the
first instance where a subnormal value
appears. You do not see red/orange checks
from those subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see subnormal results
arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results for arg1-arg2. If you use the forbid mode and perform the operation arg1-arg2 twice
in succession, only the first operation is highlighted. The second operation is not highlighted
because the subnormal result for the second operation arises from the same cause as the first
operation.

 Subnormal detection mode (-check-subnormal)

2-273

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are sufficiently
close. The first check for subnormal results is
orange. Following this check, the verification
excludes from consideration:

• The close values of arg1 and arg2 that led
to the subnormal value of difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The result
of the check on difference2 * 2 is
green for the same reason.

• The subnormal value of difference1.

In the subsequent operation difference1
* 2, the check is green.

• You cannot run the Automatic Orange Tester if you check for subnormals in your verification.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-subnormal
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-subnormal forbid

See Also
Polyspace Results
Subnormal float

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

2 Analysis Options

2-274

Detect uncalled functions (-uncalled-function-
checks)
Detect functions that are not called directly or indirectly from main or another entry point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry point function
during run-time.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line: Use the option -uncalled-function-checks. See “Command-Line Information”
on page 2-275.

Why Use This Option

Typically, after verification, the Dashboard pane shows functions that are not called during
verification. However, you do not see them in your analysis results or reports. You cannot comment on
them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this option.

Settings
Default: none

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an unreachable
part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks

 Detect uncalled functions (-uncalled-function-checks)

2-275

Value: none | never-called | called-from-unreachable | all
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -uncalled-
function-checks all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
uncalled-function-checks all

See Also
Function not reachable | Function not called

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-276

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the function is
called multiple times, using this option helps you to distinguish between the different calls.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line: Use the option -context-sensitivity. See “Command-Line Information”
(Polyspace Code Prover).

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the function
body is a combined result of both calls. If you want to distinguish between the colors in the two calls,
use this option.

For instance, if a function contains a red or orange check and a green check on the same operation
for two different calls, the software combines the contexts and displays an orange check on the
operation. If you use this option, the check turns dark orange and the result details show the color of
the check for each call.

Settings
Default: none

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

 Sensitivity context (-context-sensitivity)

2-277

• Functions that form the leaves of the call tree. These functions are called by other functions,
but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a function is
small.

custom
The software stores call context information for functions that you specify. To enter the name of a

function, click .

Tips
• If you select this option, you do not see tooltips in the body of the functions that benefit from this

option (and keep the call contexts separate).
• If you select this option, the analysis can show some code operations in grey (unreachable code)

even when you can identify execution paths leading to the operations. In this case, the grey code
indicates operations that might be unreachable only in a particular call context.

For instance, suppose this function is called with the arguments -1 and 1 :

int isPositive (int num) {
 if(num < 0)
 return 0;
 return 1;
}

If you use the option with this function as argument, there are two unreachable code checks:

• The check on if is grey because when the function is called with argument -1, the if condition
is always true.

• The check on the code inside the if branch is grey because when the function is called with
argument 1, the if condition is always false.

Each unreachable code check indicates code that is unreachable only in a particular call context.
You see the call context in the result details.

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -context-
sensitivity myFunc1,myFunc2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
context-sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the option -
context-sensitivity-auto.

2 Analysis Options

2-278

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Sensitivity context (-context-sensitivity)

2-279

Improve precision of interprocedural analysis (-
path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line Information” on
page 2-280.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding these
approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to complete
verification in a reasonable amount of time, the software combines many execution paths and stores
less information at each stage of verification. If you use this option, the software stores more
information about the execution paths, resulting in a more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

Entering a higher value leads to a greater number of proven results, but also increases verification
time exponentially. For instance, a value of 10 can result in very long verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -path-
sensitivity-delta 1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
path-sensitivity-delta 1

2 Analysis Options

2-280

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

2-281

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line: Use the option -O#, for instance, -O0 or -O1. See “Command-Line Information” on
page 2-283.

Why Use This Option

Higher precision leads to greater number of proven results but also requires more verification time.
Each precision level corresponds to a different algorithm used for verification.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a more complex static interval verification.

2
This option corresponds to a complex polyhedron model of domain values with additional
precision for interprocedural analysis depending on the option Improve precision of
interprocedural analysis (-path-sensitivity-delta).

3
This option is only suitable for code having less than 1000 lines. Using this option, the percentage
of proven results can be very high.

Tips
• For best results in reasonable time, use the default level 2. If the verification takes a long time,

reduce precision. However, the number of unproven checks can increase. Likewise, to reduce
orange checks, you can improve your precision. But the verification can take significantly longer
time.

2 Analysis Options

2-282

• The precision levels 2 and below begin to take effect only from verification levels higher than
Software Safety Analysis level 0. See also Verification level (-to).

For instance, to reduce analysis time, you might have reduced the verification level to Software
Safety Analysis level 0. Do not try to reduce the precision level below 2 to lower the
analysis time further.

Note that algorithms used in precision level 3 can also apply to the verification level Software
Safety Analysis level 0.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example (Code Prover): polyspace-code-prover -sources file_name -O1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1

See Also
Specific precision (-modules-precision) | Verification level (-to)

Topics
“Prepare Scripts for Polyspace Analysis”

 Precision level (-O)

2-283

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the entire
verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node. See “Dependency” on page 2-284 for other options you must also enable.

Command line: Use the option -modules-precision. See “Command-Line Information” on page
2-284.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and elsewhere, you
can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision > Precision level.

Click to enter the name of a file without the extension .c and the corresponding precision level.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example (Code Prover): polyspace-code-prover -sources file_name -O1 -modules-
precision My_File:02
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1
-modules-precision My_File:02

See Also
Precision level (-O)

2 Analysis Options

2-284

Topics
“Prepare Scripts for Polyspace Analysis”

 Specific precision (-modules-precision)

2-285

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code. Each run
can lead to greater number of proven results but also requires more verification time.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line: Use the option -to. See “Command-Line Information” on page 2-288.

Why Use This Option

There are many reasons you might want to increase or decrease the verification level. For instance:

• Coding rules are checked early during the compilation phase, with some exception only. If you
check for coding rules alone, you can lower the verification level. See “Check for Coding Standard
Violations”.

• If you see many orange checks after verification, try increasing the verification level. However,
increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: Software Safety Analysis level 2

Source Compliance Checking
Polyspace checks for compilation errors only. Most coding rule violations are also found in this
phase.

Software Safety Analysis level 0
The verification process performs some simple analysis. The analysis is designed to reach
completion despite complexities in the code.

If the verification gets stuck at a higher level, try running to this level and review the results.
Software Safety Analysis level 1

The verification process analyzes each function once with algorithms whose complexity depends
on the precision level. See Precision level (-O). The analysis starts from the top of the
function call hierarchy (an actual or generated main function) and propagates to the leaves of the
call hierarchy.

Software Safety Analysis level 2
The verification process analyzes each function twice. In the first pass, the analysis propagates
from the top of the function call hierarchy to the leaves. In the second pass, the analysis

2 Analysis Options

2-286

propagates from the leaves back to the top. Each pass uses information gathered from the
previous pass.

Use this option for most accurate results in reasonable time.
Software Safety Analysis level 3

The verification process runs three times on each function: from the top of the function call
hierarchy to the leaves, from the leaves to the top, and from the top to the leaves again. Each
pass uses information gathered from the previous pass.

Software Safety Analysis level 4
The verification process runs four passes on each function: from the top of the function call
hierarchy to the leaves twice. Each pass uses information gathered from the previous pass.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it manually.

Tips
• Use a higher verification level for fewer orange checks.

In some cases, if the verification can detect that results of maximum precision are available after
an earlier level, the verification stops and does not proceed to the level that you specify.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety Analysis level
0 and Software Safety Analysis level 1. In level 1, Code Prover can establish the success
of the final assertion that involves a relation between two array elements even without knowing
the actual elements of the array.

Software Safety Analysis Level 0 Software Safety Analysis Level 1
extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more precise
knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but results are
available at a lower level, Polyspace displays the results from the lower level.

• For best results, use the option Software Safety Analysis level 2. If the verification takes
too long, use a lower Verification level. Fix red errors and gray code before rerunning the
verification with higher verification levels.

 Verification level (-to)

2-287

• Use the option Other sparingly since it can increase verification time by an unreasonable amount.
Using Software Safety Analysis level 2 provides optimal verification of your code in most
cases.

• If the Verification Level is set to Source Compliance Checking, do not run verification on a
remote server. The source compliance checking, or compilation, phase takes place on your local
computer anyway. Therefore, if you are running verification only to the end of compilation, run
verification on your local computer.

• If you want to see global variable sharing and usage only use to run a less extensive analysis.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example (Code Prover): polyspace-code-prover -sources file_name -to pass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -to
pass2

You can also use these additional values not available in the user interface:

• C projects: c-to-il (C to intermediate language conversion phase)
• C++ projects: cpp-to-il (C++ to intermediate language conversion phase), cpp-normalize (C

++ normalization phase), cpp-link (C++ link phase)

Use these values only if you have specific reasons to do so. For instance, to generate a blank
constraints (DRS) template for C++ projects, you have to run an analysis up to the cpp-normalize
phase.

See Also
Precision level (-O)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-288

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete within that limit,
it stops.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line: Use the option -timeout. See “Command-Line Information” on page 2-289.

Why Use This Option

Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the verification stops.
You can use this option to reduce the time limit even further. Note that you can have verification
results despite the verification timing out. For instance, if a step in Software Safety Analysis level 1
times out, you still get the results from level 0. See Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs that might
slow down the verification. To check this, you can impose a time limit on the verification so that the
verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example (Code Prover): polyspace-code-prover -sources file_name -timeout 5.75
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
timeout 5.75

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Verification time limit (-timeout)

2-289

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line: Use the option -inline. See “Command-Line Information” on page 2-291.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling issues during
verification. If your verification takes too long, Technical Support can ask you to use this option for
certain functions.

Do not use this option to understand results. For instance, suppose a function is called twice in your
code. The check color on each operation in the function body is a combined result of both calls. If you
want to distinguish between the colors in the two calls, use the option Sensitivity context (-
context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the function
func for inlining and func is called twice, the software creates two copies of func for verification.
The copies are named using the convention func_pst_inlined_ver where ver is the version
number. You see both copies on the Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your verification
results. The semantics of the check color is different from the normal specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in one of the
calls, the check color is orange.

• If you use this option, the color changes to dark orange (shown with an orange exclamation mark
in the results list).

2 Analysis Options

2-290

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in only one of
the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch appears
gray.

Do not use this option to understand results. Use this option only if a certain function causes scaling
issues.

Tips
• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a function call
though a red check does not appear in the function body. The function body represents all calls
to the function. Therefore, if some calls to a function do not cause an error, an orange check
appears in the function body.

• Action: If you use this option, for every function call, there is a corresponding function body.
Therefore, you can trace a red check on a function call to a red check in the function body.

• Using this option can sometimes duplicate a lot of code and lead to scaling problems. Therefore
choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two Unreachable code
checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

• If you use the keyword inline before a function definition, place the definition in a header file
and call the function from multiple source files, you have the same result as using the option
Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -inline
func1,func2

 Inline (-inline)

2-291

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
inline func1,func2

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-292

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line: Use the option -k-limiting. See “Command-Line Information” on page 2-293.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing down the
verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you specify 0,
the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -k-limiting 3
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -k-
limiting 3

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 Depth of verification inside structures (-k-limiting)

2-293

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report along with analysis results.

Depending on the format you specify, you can view this report using an external software. For
example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Reporting node.

Command line: See “Command-Line Information” on page 2-295.

Why Use This Option

You can generate a report from your analysis results for archiving purposes. You can provide this
report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your specific needs. See
Bug Finder and Code Prover report (-report-template) and Output format (-
report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder.

In Polyspace desktop products, to open your results folder from the user interface, on the Project
Browser pane, right-click the results node and select Open Folder with File Manager.

2 Analysis Options

2-294

To change the results folder location, see “Project and Results Folder Contents” (Polyspace Bug
Finder).

On the command-line, the results folder is the argument of the option -results-dir.
 Off (default)

Polyspace does not generate an analysis report. You can still view your results in the Polyspace
interface.

Tips
This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the polyspace-
report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option -
generate-results-list-file with the polyspace-report-generator command.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using the options -
report-template for template and -report-output-format for output format automatically
turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format) | polyspace-report-generator

Topics
“Prepare Scripts for Polyspace Analysis”

 Generate report

2-295

Bug Finder and Code Prover report (-report-
template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in polyspaceroot\toolbox\polyspace
\psrptgen\templates\. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2019a.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. You have separate options for Bug Finder and Code Prover analysis. See
“Dependencies” on page 2-301 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information” on page 2-
302.

Why Use This Option

Depending on the template that you use, the report contains information about certain types of
results from the Results List pane. The template also determines what information is presented in
the report and how the information is organized. See the template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics” (Polyspace Bug Finder Access).

• Coding Rules: Coding rule violations in the source code. For each rule violation, the report
lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

2 Analysis Options

2-296

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics” (Polyspace Bug Finder Access).

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect, the report

lists the:

• Defect group.
• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. For more information, see “Analysis Options” (Polyspace Bug Finder). If your
project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics” (Polyspace Bug Finder Access).

• Code Metrics Details: Various quantities related to the source code with the information
broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

 Bug Finder and Code Prover report (-report-template)

2-297

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, CERT C, custom rules, and so on). Each chapter contains the following
information:

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
SecurityCWE

The report contains the same information as the BugFinder report. However, in the Defects
chapter, an additional column lists the CWE rules mapped to each defect. The Configuration
Settings appendix also includes a Security Standard to Polyspace Result Map.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace Metrics
interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for an
application.

2 Analysis Options

2-298

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, custom rules, and so on). Each chapter contains the following
information:

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover Access).

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the reviewed results
are sorted by severity and status, and unreviewed results are sorted by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the report lists code
proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first displays the
number of global variables of each type. For information on the types, see “Global Variables”
(Polyspace Code Prover Access). For each global variable, the report displays the following
information:

 Bug Finder and Code Prover report (-report-template)

2-299

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted
by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the Polyspace user
interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in your source
code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current
call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace Metrics
interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

2 Analysis Options

2-300

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface or from results uploaded to the Polyspace Metrics web interface (and then
downloaded to the Polyspace user interface) . In each case, you have to set the objectives
explicitly in the web interface and then generate the reports.

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives report.
However, it does not have the supporting appendices with details of code metrics, coding rule
violations and run-time errors.

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface or from results uploaded to the Polyspace Metrics web interface (and then
downloaded to the Polyspace user interface). In each case, you have to set a quality objective
level explicitly in the web interface and then generate the reports.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• In Bug Finder, the report does not contain the line or column number for a result. Use the report
for archiving, gathering statistics and checking whether results have been reviewed and
addressed (for certification purposes or otherwise). To review a result in your source code, use the
Polyspace user interface or your IDE if you are using a Polyspace plugin.

• If you use the SoftwareQualityObjectives_Summary and SoftwareQualityObjectives
templates to generate reports, the pass/fail status depends on whether you set the quality
objectives level in Polyspace Metrics or Polyspace Access:

• In Polyspace Access, the pass/fail status is determined based on all results. For instance, if you
use the level SQO-4 which sets a threshold of 60% on orange overflow checks, your project has
a FAIL status if the percentage of green and justified orange overflow checks is less than 60%
of all green and orange overflow checks.

• In Polyspace Metrics, the pass/fail status is determined based on a file-by-file basis. The overall
status is FAIL if one of the files have a FAIL status. For instance, if you use the level SQO-4
which sets a threshold of 60% on orange overflow checks, your project has a FAIL status if the
percentage of green and justified orange overflow checks in any file is less than 60% of green
and orange overflow checks in that file.

 Bug Finder and Code Prover report (-report-template)

2-301

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder\BugFinder.rpt
Example (Code Prover): polyspace-code-prover -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\Developer.rpt
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder
\BugFinder.rpt
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt

See Also
Generate report | Output format (-report-output-format) | polyspace-report-
generator

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-302

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. See “Dependencies” on page 2-303 for other options you must also enable.

Command line: Use the option -report-output-format. See “Command-Line Information” on
page 2-304.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• If the table of contents or graphics in a .docx report appear outdated, select the content of the
report and refresh the document. Use keyboard shortcuts Ctrl+A to select the content and F9 to
refresh it.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

 Output format (-report-output-format)

2-303

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-output-
format pdf
Example (Code Prover): polyspace-code-prover -sources file_name -report-output-
format pdf
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-output-format pdf
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-output-format pdf

See Also
Bug Finder and Code Prover report (-report-template) | Generate report |
polyspace-report-generator

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-304

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
This option applies to the Polyspace desktop products only. The option is used to send the analysis
from a desktop to a server (where the analysis runs using the Polyspace server products).

Specify that the analysis must be offloaded to a remote server.

To offload a Polyspace analysis, you need:

• Polyspace Bug Finder Server and/or Polyspace Code Prover Server, and MATLAB Parallel Server™
on the server.

• Polyspace Bug Finder and/or Polyspace Code Prover on the desktop.

See “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Set Option

User interface: In your project configuration, the option is on the Run Settings node. You have
separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 2-306.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local desktop.

For instance, you can run remote analysis when:

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis is queued on
a cluster after the compilation phase. Therefore, on your local computer, after the analysis is
queued:

• If you are running the analysis from the Polyspace user interface, you can close the user
interface.

• If you are running the analysis from the command line, you can close the command-line
window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job Monitor:

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

2-305

• In the Polyspace user interface, select Tools > Open Job Monitor. See “Send Polyspace
Analysis from Desktop to Remote Servers”.

• On the DOS or UNIX® command line, use the polyspace-jobs-manager command. For
more information, see “Send Polyspace Analysis from Desktop to Remote Servers Using
Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.
 Off (default)

Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the option -no-

credentials-check. The credentials check performed in the product is only compatible with
the MATLAB Job Scheduler. In the Polyspace user interface, add this option to the Other field.

• Do not run a Code Prover analysis on a remote cluster if you run up to the Verification Level of
Source Compliance Checking. For both local and remote analysis, the source compliance
checking or compilation phase takes place on your local computer. Therefore, if you are running
only up to this phase, run on your local computer.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in the Polyspace
user interface
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler MJSName@NodeHost
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler MJSName@NodeHost

See Also
-scheduler

Topics
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
“Prepare Scripts for Polyspace Analysis”
“Send Polyspace Analysis from Desktop to Remote Servers”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Analysis from Client to Server”

2 Analysis Options

2-306

Upload results to Polyspace Metrics (-add-to-
results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
This option applies to the Polyspace desktop products only.

Specify upload of analysis results to the Polyspace Metrics results repository, allowing Web-based
reporting of results and code metrics.

Set Option

User interface: In your project configuration, the option is on the Run Settings node. You have
separate options for a Bug Finder and a Code Prover analysis. See “Dependencies” on page 2-307 for
other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line Information”
on page 2-308.

Why Use This Option

Polyspace Metrics is a web dashboard that generates code quality metrics from your analysis results.
Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics with Polyspace Metrics” (Polyspace Bug Finder).

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows you to use a
Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug Finder or Code
Prover analysis on a remote cluster (-batch).

 Upload results to Polyspace Metrics (-add-to-results-repository)

2-307

If you perform a local analysis on your desktop, you can later upload your results to Polyspace
Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost -add-to-
results-repository -password passwordName
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost -add-to-
results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user interface. See
“Set Up Polyspace Metrics” (Polyspace Bug Finder). If you want to explicitly specify the Polyspace
Metrics server during upload, use the option -polyspace-metrics-server
serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Set Up Polyspace Metrics” (Polyspace Bug Finder)
“Generate Code Quality Metrics with Polyspace Metrics” (Polyspace Bug Finder)

2 Analysis Options

2-308

Use fast analysis mode for Bug Finder (-fast-
analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs analyze only
the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules. When you
launch fast analysis, Bug Finder analyzes your code for a subset of defects and coding rules.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Run Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on page 2-311.

Why Use This Option

If you use this option, you have to wait less for analysis results from your second analysis onwards.
During development, you can frequently run analysis in fast mode and quickly check for new defects
or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in fast-analysis
mode, Polyspace reanalyzes only those files that need to be reanalyzed, regenerating results even
more quickly. These situations trigger a reanalysis.

Situation What Is Reanalyzed
You modified a source file. Modified source file
You modified a header file. Source files that include the modified header file

(directly or indirectly)
You added or removed an analysis option. All files
Previous fast-analysis results were not found.

For instance, you deleted the results folder.

All files

You upgraded to a later release of Polyspace
and ran the analysis.

All files

Comments from the previous analysis are retained
and imported to the current analysis.

For example, consider a Polyspace project with three .c files and you fix a bug in one of the files.
When you rerun the analysis, Polyspace reanalyzes only the one file that you changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

 Use fast analysis mode for Bug Finder (-fast-analysis)

2-309

Settings

Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a subset of
defects and coding rules. If you have selected any defects or coding rules that are not supported
by fast-analysis, you code is not checked for those results.

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected defects, coding
rules, and code metrics.

Tips
Comments Import

If you enter comments in your results, the comments are automatically imported to the next analysis
in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder analysis, do one of
the following:

• Select Tools > Import Comments. Navigate to the sibling results folder BF_Fast_Result and
import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code. If you run a
regular analysis on this code, the comments are imported to your analysis results.

For details on how to enter code comments, see “Annotate Code and Hide Known or Acceptable
Results” (Polyspace Bug Finder).

Fast Analysis Limitations

In fast analysis mode, you cannot perform these actions:

2 Analysis Options

2-310

• You cannot create a new results folder for each run. Even if you choose to create a new result
folder, each new run overwrites the previous one.

• You cannot specify constraints using the option Constraint setup (-data-range-
specifications).

• You cannot run the analysis on a remote cluster.

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -fast-analysis
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -fast-
analysis

See Also
Topics
“Bug Finder Results Found in Fast Analysis Mode”

 Use fast analysis mode for Bug Finder (-fast-analysis)

2-311

Command/script to apply after the end of the code
verification (-post-analysis-command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node.

Command line: Use the option -post-analysis-command. See “Command-Line Information” on
page 2-313.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a script that
sends an email and use this option to execute the script after the Polyspace analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the command or
script. After the analysis, this script is executed.

The script is executed in the Polyspace results folder. In your script, consider the results folder as the
current folder for relative paths to other files.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path to
the script. For example, to specify a Perl script send_email.pl that sends an email once the
analysis is over, enter polyspaceroot\sys\perl\win32\bin\perl.exe <absolute_path>
\send_email.pl. Here, polyspaceroot is the location of the current Polyspace installation, such
as C:\Program Files\Polyspace\R2019a\, and <absolute_path> is the location of the Perl
script.

Tips
Running post analysis commands on the server

If you perform verification on a remote server, after verification, the software executes your command
on the server, not on the client desktop. If your command executes a script, the script must be
present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell script
send_email.sh must be present on the server in /local/utils/. The software does not copy the

2 Analysis Options

2-312

script send_email.sh from your desktop to the server before executing the command. If the script
is not present on the server, you encounter an error. Sometimes, there are multiple servers that the
MATLAB Job Scheduler can run the verification on. Place the script on each of the servers because
you do not control which server eventually runs your verification.

Running post analysis commands in the Polyspace user interface

To test the use of this option, run the following Perl script from a folder containing a Polyspace
project (.psprj file). The script parses the latest Polyspace log file in the folder
Module_1\CP_Result and writes the current project name and date to a file report.txt. The file
is saved in Module_1\CP_Result.

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes Perl and
runs this script. For instance, the .bat file can contain the following line (assuming that the .bat file
and .pl file are in the Polyspace project folder). Depending on your MATLAB installation, change the
path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file report.txt with
the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux (Bug Finder): polyspace-bug-finder -sources file_name -post-
analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover) : polyspace-code-prover -sources file_name -post-
analysis-command `pwd`/send_email.pl

 Command/script to apply after the end of the code verification (-post-analysis-command)

2-313

Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-analysis-
command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\send_email"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Analysis Options

2-314

Automatic Orange Tester (-automatic-orange-
tester)
Specify that Automatic Orange Tester must be executed after verification

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependency” on page 2-315 for other options you must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line Information” on
page 2-316.

Why Use This Option

The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help you determine
if an orange check represents a real run-time error or an imprecision of Polyspace analysis. For a
tutorial, see “Test Orange Checks for Run-Time Errors” (Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before verification.
During verification, Polyspace generates additional source code to test each orange check for errors.
When you run the Automatic Orange Tester later, the software uses this instrumented code for
testing.

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests for
unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select Tools >

Automatic Orange Tester.

 Automatic Orange Tester (-automatic-orange-tester)

2-315

• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target & Compiler >

Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...(Advanced) for

Target & Compiler > Target processor type. For the same option, you must specify the type
pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In global
assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection mode and
Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester

See Also
Maximum loop iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout) | Number of automatic tests (-
automatic-orange-tester-tests-number)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

2 Analysis Options

2-316

Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration)
Specify number of loop iterations after which Automatic Orange Tester considers infinite loop

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify number of loop iterations after which the Automatic Orange Tester considers the loop to be
infinite. Specifying a large number decreases the possibility of identifying an infinite loop incorrectly,
but takes more time to complete.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 2-317 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration. See
“Command-Line Information” on page 2-317.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration 500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

2-317

Number of automatic tests (-automatic-orange-
tester-tests-number)
Specify number of tests that Automatic Orange Tester must run

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify number of tests that you want the Automatic Orange Tester to run. The more the number of
tests, the greater the possibility of finding a run-time error, but longer it takes to complete.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 2-318 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See “Command-
Line Information” on page 2-318.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

2 Analysis Options

2-318

Maximum test time (-automatic-orange-tester-
timeout)
Specify time in seconds allowed for a single test in Automatic Orange Tester

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify time in seconds allowed for a single test. After this time is over, the Automatic Orange Tester
proceeds to the next test. Increasing this time reduces number of tests that do not complete, but
increases total verification time.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 2-319 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See “Command-Line
Information” on page 2-319.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

 Maximum test time (-automatic-orange-tester-timeout)

2-319

Other
Specify additional flags for analysis

Description
This option is useful only if you run an analysis in the user interface of the Polyspace desktop
products.

Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can enter multiple
options in this field. If you enter the same option multiple times with different arguments, the analysis
uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

If you have to add several command line options, you can save them in a text file and specify the file
using the option -options-file. You can reuse the options file across projects.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues, MathWorks Technical
Support might provide you some undocumented options. If you are running verification from the user
interface, you use the Other field in the Configuration pane to enter the options. Sometimes, the
options and their arguments have to be preceded by extra flags. When providing you the option,
Technical Support will let you know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -cfe-extra-
flags | -il-extra-flags
Example (Bug Finder): polyspace-bug-finder -extra-flags -option-name -extra-
flags option_param
Example (Code Prover): polyspace-code-prover -extra-flags -option-name -extra-
flags option_param
Example (Bug Finder Server): polyspace-bug-finder-server -extra-flags -option-
name -extra-flags option_param
Example (Code Prover Server): polyspace-code-prover-server -extra-flags -option-
name -extra-flags option_param

2 Analysis Options

2-320

Analysis Options, Command-Line Only

3

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes compiler-
specific assembly language source code functions from the analysis. You must use these two options
together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation errors
occur due to introduction of assembly code. For more information, see “Assembly Code” (Polyspace
Code Prover).

Mark the offending code block by two #pragma directives, one at the beginning of the assembly code
and one at the end. In the command usage, give these marks in the same order for -asm-begin as
they are for -asm-end.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must be in the
same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

• Bug Finder:

3 Analysis Options, Command-Line Only

3-2

polyspace-bug-finder -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover:

polyspace-code-prover -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Bug Finder Server:

polyspace-bug-finder-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover Server:

polyspace-code-prover-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code sections to
be ignored. asm_end_foo and asm_end_bar mark the end of those respective sections.

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 -asm-begin -asm-end

3-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the project
owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX command whoami.

In the user interface of the Polyspace desktop products, select to specify the Project name,
Version, and Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

• Bug Finder:

polyspace-bug-finder -author "John Smith"
• Code Prover:

polyspace-code-prover -author "John Smith"
• Bug Finder Server:

polyspace-bug-finder-server -author "John Smith"
• Code Prover Server:

polyspace-code-prover-server -author "John Smith"

See Also
-date | -prog

Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-4

-code-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-code-behavior-specifications file1[, file2, [...]]

Description
-code-behavior-specifications file1[, file2, [...]] specifies XML files that allow you
to associate behaviors with elements of your code. For instance, you can:

• Map your library functions to corresponding standard functions that Polyspace recognizes.
Mapping to standard library functions can help with precision improvement or automatic
detection of new threads.

• Specify a function as forbidden.

If you run verification from the command line, specify the absolute path to the XML files or path
relative to the folder from which you run the command. If you run verification from the user interface
(desktop products only), specify the option along with an absolute path to the XML file in the Other
field. See Other.

A sample template file code-behavior-specifications-sample.xml shows the XML syntax.
The file is in polyspaceroot\polyspace\verifier\cxx\ where polyspaceroot is the
Polyspace installation folder.

Using Option for Precision Improvement

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file to reduce the number of orange checks from imprecise Code Prover
analysis of your function (or false negatives from an imprecise Bug Finder analysis). Sometimes, the
verification does not analyze certain kinds of functions precisely because of inherent limitations in
static verification. In those cases, if you find a standard function that is a close analog of your
function, use this mapping. Though your function itself is not analyzed, the analysis is more precise at
the locations where you call the function. For instance, if the verification cannot analyze your function
cos32 precisely and considers full range for its return value, map it to the cos function for a return
value in [-1,1].

The verification ignores the body of your function. However, the verification emulates your function
behavior in the following ways:

• The verification assumes the same return values for your function as the standard function.

For instance, if you map your function cos32 to the standard function cos, the verification
assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos, the Invalid use
of standard library routine check determines if the argument of acos32 is in [-1,1].

 -code-behavior-specifications

3-5

The functions that you can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and produces
an orange Non-initialized local variable check on a variable that you initialized through
this function. If you know that your memory initialization function initializes the variable through
its address, map your function to __ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value within the
range of the input array.

Sometimes, the verification considers full range for the return values of functions that look up
values in large arrays (look-up table functions). If you know that the return value of a look-up table
function must be within the range of values in its input array, map the function to
__ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for look-up table
functions. To identify if the look-up table uses linear interpolation and no extrapolation, the
verification uses the function names. Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not follow
specific conventions. You must explicitly specify them.

See also “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”.

Using Option for Concurrency Detection

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain families of
multitasking primitives only. Extend the support using this XML entry.

If your thread-creation function, for instance, does not belong to one of the supported families, map
your function to a supported concurrency primitive.

See “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”.

Using Option for Blacklisting Functions

This section applies only to a Bug Finder analysis.

XML Syntax: <function name="function_name" behavior="FORBIDDEN_FUNC"> </
function>

Use this entry in the XML file to specify a list of functions that you want to prohibit from your source
code.

See “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”.

Examples
The examples in the next sections refer to a Code Prover analysis. For Bug Finder examples, see:

3 Analysis Options, Command-Line Only

3-6

• “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”
• “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”
• “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation and map your
function to a standard function.

Suppose the default verification produces an orange User assertion check on this code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the return value is 0.
You expect the check on the assert statement to be green. However, the verification considers that
acos32 returns any value in the range of type double because acos32 is not precisely analyzed. The
check is orange. To map your function acos32 to acos:

1 Copy the file code-behavior-specifications-sample.xml from polyspaceroot
\polyspace\verifier\cxx\ to another location, for instance, "C:\Polyspace_projects
\Common\Config_files". Change the write permissions on the file.

2 To map your function to a standard function, modify the contents of the XML file. To map your
function acos32 to the standard library function acos, change the following code:

<function name="my_lib_cos" std="acos"> </function>

To:

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification:

• Code Prover:

polyspace-code-prover -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-sample.xml"

• Code Prover Server:

polyspace-code-prover-server -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the standard
function. In those cases, remap your function argument to the standard function argument. For
instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and returns values
within the range of the look-up table. Your look-up table function might have additional arguments
besides the look-up table array itself. In this case, use argument remapping to specify which
argument of your function is the look-up table array.

 -code-behavior-specifications

3-7

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array. In the file
code-behavior-specifications-sample.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in table10.
• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a number of
bytes as the second argument. The function assumes that the bytes in memory starting from the
memory address are initialized with a valid value. Your memory initialization function might have
additional arguments. In this case, use argument remapping to specify which argument of your
function is the starting address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument is the
number of bytes. In the file code-behavior-specifications-sample.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from &buffer are
initialized.

• memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a standard
function without explicit argument remapping. For instance, say your function is declared as:

void* my_memset(void*, int, size_t, ...)

3 Analysis Options, Command-Line Only

3-8

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check turns red.
Otherwise, the verification does not check whether the argument of my_sqrt is nonnegative.

• Before mapping:

res = my_sqrt(-1.0);
• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);
• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_lookup_table is within the range of the look-up table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

 -code-behavior-specifications

3-9

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green. The
verification assumes that all fields of the structure x are initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red. The
verification assumes that only the field field1 of the structure x is initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};

3 Analysis Options, Command-Line Only

3-10

.

.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

 -code-behavior-specifications

3-11

-custom-target
Create a custom target processor with specific data type sizes

Syntax
-custom-target target_sizes

Description
-custom-target target_sizes defines a custom target processor for the Polyspace analysis. The
target processor definition includes sizes in bytes of fundamental data types, signedness of plain
char, alignment of structures and underlying types of standard typedef-s such as size_t,
ptrdiff_t and wchar_t.

target_sizes is a comma-separated list specifying these values. From left to right, the values are
the following. If a data type is not supported, -1 is used for its size.

Specification Possible Values
Whether plain char is signed true or false
Size of char in bits

Other sizes are in bytes.

Number

Size of short Number
Size of int Number
Size of short long Number
Size of long Number
Size of long long Number
Size of float Number
Size of double Number
Size of long double Number
Size of pointer Number
Maximum alignment of all integer types Number
Maximum alignment of variables of type struct
or union

Number

Endianness little or big
Underlying type of size_t unknown, unsigned_char, unsigned_short,

unsigned_int, unsigned_long, or
unsigned_long_long

Underlying type of ptrdiff_t unknown, signed_char, short, int, long, or
long_long

Underlying type of wchar_t unknown, short, unsigned_short, int,
unsigned_int, long, or unsigned_long

3 Analysis Options, Command-Line Only

3-12

Typically, this option is used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. However, you can directly enter this option when manually
writing options files. This option is useful in situations where your target specifications are not
covered by one of the predefined target processors. See Target processor type (-target).

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
An usage of the option looks like this:

-custom-target false,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_int

The option argument translates to the following target specification.

Specification Possible Values
Whether plain char is signed false
Size of char 8 bits
Size of short 2 bytes
Size of int 4 bytes
Size of short long short long is not supported.
Size of long 4 bytes
Size of long long 8 bytes
Size of float 4 bytes
Size of double 8 bytes
Size of long double 8 bytes
Size of pointer 4 bytes
Maximum alignment of all integer types 8 bytes
Maximum alignment of variables of type struct
or union

1 byte

Endianness little
Underlying type of size_t unsigned_int
Underlying type of ptrdiff_t int
Underlying type of wchar_t unsigned_int

See Also
Generic target options | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”

 -custom-target

3-13

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By default the
value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project:

• Bug Finder:

polyspace-bug-finder -date "15/03/2012"
• Code Prover:

polyspace-code-prover -date "15/03/2012"
• Bug Finder Server:

polyspace-bug-finder-server -date "15/03/2012"
• Code Prover Server:

polyspace-code-prover-server -date "15/03/2012"

See Also
-author | -date

Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-14

-doc | -documentation
Display Polyspace documentation in help browser

Syntax
-doc
-documentation

Description
-doc and -documentation opens Polyspace documentation in a help browser. You can see
information such as getting started, workflows and reference pages for commands and analysis
options. You can also search through the documentation in the help browser.

Examples
Display Polyspace documentation in a help browser:

• Bug Finder:

polyspace-bug-finder -doc
polyspace-bug-finder -documentation

• Code Prover:

polyspace-code-prover -doc
polyspace-code-prover -documentation

• Bug Finder Server:

polyspace-bug-finder-server -doc
polyspace-bug-finder-server -documentation

• Code Prover Server:

polyspace-code-prover-server -doc
polyspace-code-prover-server -documentation

See Also
-h[elp]

 -doc | -documentation

3-15

-dump-preprocessing-info
Show all macros implicitly defined during a particular analysis

Syntax
-dump-preprocessing-info

Description
-dump-preprocessing-info prints all the macros implicitly defined (or undefined) during a
particular Polyspace analysis. The macro definitions come from:

• Your specification for the option Compiler (-compiler)

Polyspace emulates a compiler by defining the compiler-specific macros.
• Macros defined (or undefined) in the Polyspace implementation of Standard Library headers
• Macros that you explicitly define (or undefine) using the options Preprocessor definitions

(-D) and Disabled preprocessor definitions (-U)

Use this option only if you want to know how Polyspace defines a specific macro. In case you want to
use a different definition for the macro, you can then override the current definition.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other. On the Output
Summary pane, you can see each macro definition on a separate line. You can search for the macro
name in the user interface and click the line with the macro name to see further details in the Detail
pane.

Examples
Suppose that you use the ARM v6 compiler for building your source code. For the Polyspace analysis,
you use the value armclang for the option Compiler (-compiler). Suppose that you want to
know what Polyspace uses as definition for the macro __ARM_ARCH.

1 Enter the following command and pipe the console output to a file that you can search later:

polyspace-bug-finder -sources aFile.c -compiler armclang -dump-preprocessing-info

aFile.c can be a simple C file. You can also replace polyspace-bug-finder with
polyspace-code-prover, polyspace-bug-finder-server or polyspace-code-prover-
server.

2 Search for __ARM_ARCH in the file containing the console output. You can see the line with the
macro definition:

Remark: Definition of macro __ARM_ARCH (pre-processing __polyspace__stdstubs.c)
|#define __ARM_ARCH 8
|defined by syntax extension xml file
|predefined macro

3 Analysis Options, Command-Line Only

3-16

In this example, the macro is set to the value 8.

• To override this macro definition, use the option Preprocessor definitions (-D).
• To undefine this macro, use the option Disabled preprocessor definitions (-U).

See Also
Compiler (-compiler)

Topics
“Prepare Scripts for Polyspace Analysis”

 -dump-preprocessing-info

3-17

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from a project file PRJFILE
(created in the user interface of the Polyspace desktop products) so that you can run an analysis from
the command line. For each project module and each configuration in each module, a folder is
created containing the following files::

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you specify the

Temporally exclusive tasks (-temporal-exclusions-file) option.
• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the scripting
files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script that calls the
correct commands. The script also calls any options that cannot be given to the -options-file
command, such as -batch or -add-to-results-repository. You can give this file additional
analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs from the user
interface. If your project runs in the Polyspace user interface, the script will run from the command
line.

Examples
Extract information to run myproject from the command line. Use this option with the desktop
binary polyspace:

• Bug Finder:

polyspace -generate-launching-script-for myproject.psprj -bug-finder

• Code Prover:

polyspace -generate-launching-script-for myproject.psprj

See Also
Topics
“Configure Polyspace Analysis Options in User Interface and Generate Scripts”

3 Analysis Options, Command-Line Only

3-18

-h | -help
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the command window along with option argument
syntax.

Examples
Display the command-line help:

• Bug Finder:

polyspace-bug-finder -h
polyspace-bug-finder -help

• Code Prover:

polyspace-code-prover -h
polyspace-code-prover -help

• Bug Finder Server:

polyspace-bug-finder-server -h
polyspace-bug-finder-server -help

• Code Prover Server:

polyspace-code-prover-server -h
polyspace-code-prover-server -help

-doc | -documentation

 -h | -help

3-19

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your sources. You can
specify only one folder for each instance of -I. However, you can specify this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For instance, if your
code contains the preprocessor directive #include<../mylib.h> and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include folders that
you specify.

Examples
Include two folders with the analysis:

• Bug Finder:

polyspace-bug-finder -I /com1/inc -I /com1/sys/inc

• Code Prover:

polyspace-code-prover -I /com1/inc -I /com1/sys/inc

• Bug Finder Server:

polyspace-bug-finder-server -I /com1/inc -I /com1/sys/inc

• Code Prover Server:

polyspace-code-prover-server -I /com1/inc -I /com1/sys/inc

The source folder is implicitly included. Include files in the source folder can be found automatically
without explicit inclusion of the source folder with the -I option.

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-20

-import-comments
Import review information from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the review information (status, severity and
additional notes) from a previous analysis, as specified by the results folder.

You can import review information from the same type of results only. For instance:

• You cannot import review information from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics of Bug
Finder and Code Prover can be different. The only exception is checkers for coding rules. You can
import comments between Bug Finder and Code Prover for coding rule violations.

• You cannot import review information from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Import review information from the previous results:

• Bug Finder:

polyspace-bug-finder -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover:

polyspace-code-prover -sources filename
 -import-comments C:\Results\myProj\1.2

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -import-comments C:\Results\myProj\1.2

See Also
-v[ersion] | polyspace-comments-import

 -import-comments

3-21

Topics
“Import Review Information from Previous Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-22

-list-all-values
Display valid option arguments for a given command-line option

Syntax
-list-all-values option

Description
-list-all-values option displays all the valid option arguments for the command-line option
option.

Examples
Display the valid option arguments for option -misra3:

• Polyspace Bug Finder:

polyspace-bug-finder -list-all-values -misra3
• Polyspace Code Prover:

polyspace-code-prover -list-all-values -misra3
• Polyspace Bug Finder Server:

polyspace-bug-finder-server -list-all-values -misra3
• Polyspace Code Prover Server:

polyspace-code-prover-server -list-all-values -misra3

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2020a

 -list-all-values

3-23

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the analysis to
use. On a multicore system, the software parallelizes the analysis and creates the specified number of
processes to speed up the analysis. The valid range of num is 1 to 128.

Unless you specify this option, a Code Prover verification uses up to four processes. If you have fewer
than four processes, the verification uses the maximum available number. To increase or restrict the
number of processes, use this option.

Unless you specify this option, a Bug Finder analysis uses the maximum number of available
processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the number of
processes you create is greater than the number of processors available, the analysis does not benefit
from the parallelization. Check the system information in your operating system.

Note that when you start a verification, a message states the number of logical processors detected
on your system. However, the analysis is parallelized to the physical processor cores on a machine.
Multithreading implementations such as hyper-threading is not taken into account.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis:

• Bug Finder:

polyspace-bug-finder -max-processes 1

• Code Prover:

polyspace-code-prover -max-processes 1

• Bug Finder Server:

polyspace-bug-finder-server -max-processes 1

• Code Prover Server:

polyspace-code-prover-server -max-processes 1

3 Analysis Options, Command-Line Only

3-24

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your machine has 16
GB of RAM, do not use this option to specify more than four processes.

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 -max-processes

3-25

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-non-preemptable-tasks function1[,function2[,...]] specifies functions that represent
nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic tasks and cyclic tasks but can be interrupted
by interrupts, preemptable or nonpreemptable. Noncyclic tasks are specified with the option Tasks
(-entry-points), cyclic tasks with the option Cyclic tasks (-cyclic-tasks) and interrupts
with the option Interrupts (-interrupts). For examples, see “Define Preemptable Interrupts
and Nonpreemptable Tasks”.

To specify a function as a nonpreemptable cyclic task, you must first specify the function as a cyclic
or noncyclic task. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2016b

3 Analysis Options, Command-Line Only

3-26

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be a text file
with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

• Bug Finder or Bug Finder Server:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

• Code Prover or Code Prover Server:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt:

• Bug Finder:

polyspace-bug-finder -options-file listofoptions.txt
• Code Prover:

 -options-file

3-27

polyspace-code-prover -options-file listofoptions.txt
• Bug Finder Server:

polyspace-bug-finder-server -options-file listofoptions.txt
• Code Prover Server:

polyspace-code-prover-server -options-file listofoptions.txt

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-28

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of Polyspace
analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. The option -options-for-sources associates a group of
analysis options such as include folders and macro definitions with specific source files.

However, you can directly enter this option when manually writing options files. This option is useful
in situations where you want to associate a group of options with a specific source file without
applying it to other files.

In the user interface of the Polyspace desktop products, you can create a Polyspace project from your
build command. The project uses the option -options-for-sources to associate specific Polyspace
analysis options with specific files. However, when you open the project in the user interface, you
cannot see the use of this option. Open the project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/include and
the macros __STDC_VERSION__ and __GNUC__ are associated only with the source file file.c and
not fileAnother.c.

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

See Also
-options-file | polyspace-configure

Topics
“Prepare Scripts for Polyspace Analysis”

 -options-for-sources

3-29

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-preemptable-interrupts function1[,function2[,...]] specifies functions that represent
preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other interrupts,
preemptable or nonpreemptable. Interrupts are specified with the option Interrupts (-
interrupts). For examples, see “Define Preemptable Interrupts and Nonpreemptable Tasks”.

To specify a function as a preemptable interrupt, you must first specify the function as an interrupt.
The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2016b

3 Analysis Options, Command-Line Only

3-30

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies a name for your Polyspace project. This name must use only letters,
numbers, underscores (_), dashes (-), or periods (.).

The name appears in the analysis log and a few other places.

Examples
Assign a name to your Polyspace project:

• Bug Finder:

polyspace-bug-finder -prog MyApp
• Code Prover:

polyspace-code-prover -prog MyApp
• Bug Finder Server:

polyspace-bug-finder-server -prog MyApp
• Code Prover Server:

polyspace-code-prover-server -prog MyApp

See Also
-author | -date

Topics
“Prepare Scripts for Polyspace Analysis”

 -prog

3-31

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName
replaces tokens in preprocessor directives for the purposes of Polyspace analysis. The original source
code is unchanged. You match a token using a regular expression in the file matchFileName and
replace the token using a replacement in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before preprocessing.
If a token in your source code causes a compilation error, you can typically replace or remove the
token from the preprocessed code. Use the more convenient option Command/script to apply to
preprocessed files (-post-preprocessing-command). You cannot make the replacements in
preprocessed code only for tokens in preprocessor directives.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace patterns.

Examples
Suppose you want to replace _rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16*)(&_rom_beg)

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^\s*#define\s+ROM_BEG_ADDR\s+\(uint16_t*\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s* represents zero or more whitespace characters.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete list of
regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

3 Analysis Options, Command-Line Only

3-32

https://perldoc.perl.org/perlre.html#Regular-Expressions

Specify the two text files during analysis with the options -regex-replace-rgx and -regex-
replace-fmt:

• Bug Finder:

polyspace-bug-finder -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover:

polyspace-code-prover -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Prepare Scripts for Polyspace Analysis”

 -regex-replace-rgx -regex-replace-fmt

3-33

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report:

• Bug Finder:

polyspace-bug-finder -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover:

polyspace-code-prover -report-template Developer
 -report-output-name Airbag_v3.doc

• Bug Finder Server:

polyspace-bug-finder-server -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover Server:

polyspace-code-prover-server -report-template Developer
 -report-output-name Airbag_v3.doc

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format)

Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-34

-results-dir
Specify the results folder

Syntax
-results-dir resultsFolder

Description
-results-dir resultsFolder specifies where to save the analysis results. The default location at
the command line is the current folder.

If you are running analysis in the user interface of the Polyspace desktop products, see “Run
Polyspace Analysis on Desktop” (Polyspace Bug Finder).

Examples
Specify to store your results in the RESULTS folder:

• Bug Finder:

polyspace-bug-finder -results-dir RESULTS

• Code Prover:

polyspace-code-prover -results-dir RESULTS

• Bug Finder Server:

polyspace-bug-finder-server -results-dir RESULTS

• Code Prover Server:

polyspace-code-prover-server -results-dir RESULTS

You can create the name of the results folder based on the verification date and time. For instance, in
a Bash shell, enter these commands to create a variable RESULTS that begins with results_ and
contains the current date and time:

export DATETIME=$(date +%d%B_%HH%M_%A)
export RESULTS=results_$DATE

You can then use the variable RESULTS as argument of the option -results-dir:

-results-dir $RESULTS

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

 -results-dir

3-35

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the MATLAB Parallel Server cluster
that manages Polyspace analysis submissions from multiple clients and allocates the analysis to
worker nodes. You use this option along with the option Run Bug Finder or Code Prover
analysis on a remote cluster (-batch) to offload an analysis from a desktop to a remote
cluster. Note that you use this option with the commands in the desktop products (polyspace-bug-
finder and polyspace-code-prover) and not the commands in the server products (polyspace-
bug-finder-server and polyspace-code-prover-server).

For more information, see “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Examples
Run a batch analysis on a remote server using one of these syntaxes for the job scheduler:

• Bug Finder:

polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder -batch -scheduler MJSName@NodeHost

• Code Prover:

polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler 192.168.1.124:12400
polyspace-code-prover -batch -scheduler MJSName@NodeHost

For details, see “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”.

You can track the status of the job using the polyspace-jobs-manager command:

polyspace-jobs-manager listjobs -scheduler NodeHost

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

3 Analysis Options, Command-Line Only

3-36

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the list of
source files that you want to analyze. You can use standard UNIX wildcards with this option to specify
your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

• Bug Finder:

polyspace-bug-finder -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover:

polyspace-code-prover -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Bug Finder Server:

polyspace-bug-finder-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover Server:

polyspace-code-prover-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

See Also
-sources-list-file | polyspace-configure

Topics
“Prepare Scripts for Polyspace Analysis”

 -sources

3-37

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists each file name
that you want to analyze.

To specify your sources in the text file, on each line, specify the path to a source file. You can specify
an absolute path or a path relative to the folder from which you are running the analysis. For
example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt:

• Bug Finder:

polyspace-bug-finder -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder -sources-list-file "/home/polyspace/files.txt"

• Code Prover:

polyspace-code-prover -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover -sources-list-file "/home/polyspace/files.txt"

• Bug Finder Server:

polyspace-bug-finder-server -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-server -sources-list-file "/home/polyspace/files.txt"

• Code Prover Server:

polyspace-code-prover-server -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover-server -sources-list-file "/home/polyspace/files.txt"

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-38

-submit-job-from-previous-compilation-results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace analysis must
start after the compilation phase with compilation results from a previous analysis. The option is
primarily useful when offloading a Polyspace analysis from desktops to remote servers. If a remote
analysis stops after compilation, for instance because of communication problems between the server
and client computers, use this option. Note that you use this option with the commands in the
desktop products (polyspace-bug-finder and polyspace-code-prover) and not the commands
in the server products (polyspace-bug-finder-server and polyspace-code-prover-server).

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and coding rule
checking.

2 The analysis job is then submitted to the MATLAB job scheduler on the head node of the MATLAB
Parallel Server cluster.

3 The head node of the MATLAB Parallel Server cluster assigns the verification job to a worker
node, where the remaining phases of the Polyspace analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this option to
reuse compilation results from the previous analysis. You thereby avoid restarting the analysis from
the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove the option
and restart analysis from the compilation phase.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify remote analysis with compilation results from a previous analysis:

• Bug Finder:

polyspace-bug-finder -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

• Code Prover:

polyspace-code-prover -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

 -submit-job-from-previous-compilation-results

3-39

See Also
Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

3 Analysis Options, Command-Line Only

3-40

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that behave like
the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined in your
code.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it does not
recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-functions
option:

polyspace-bug-finder -termination-functions my_exit

See Also

 -termination-functions

3-41

http://www.cplusplus.com/reference/cstdlib/exit/

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder of the
results folder. Use this option only when the standard temporary folder does not have enough disk
space. If the results folder is mounted on a network drive, this option can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files”
(Polyspace Bug Finder).

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder:

• Bug Finder:

polyspace-bug-finder -tmp-dir-in-results-dir
• Code Prover:

polyspace-code-prover -tmp-dir-in-results-dir
• Bug Finder Server:

polyspace-bug-finder-server -tmp-dir-in-results-dir
• Code Prover Server:

polyspace-code-prover-server -tmp-dir-in-results-dir

See Also
Topics
“Prepare Scripts for Polyspace Analysis”

3 Analysis Options, Command-Line Only

3-42

-v | -version
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product:

• Bug Finder:

polyspace-bug-finder -v
• Code Prover:

polyspace-code-prover -v
• Bug Finder Server:

polyspace-bug-finder-server -v
• Code Prover Server:

polyspace-code-prover-server -v

 -v | -version

3-43

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in the XML file
located in file_path to interpret code annotations in your source files. You can use the XML file to
specify an annotation syntax and map it to the Polyspace annotation syntax. When you run an analysis
by using this option, you can justify and hide results with annotations that use your syntax. If you run
Polyspace at the command line, file_path is the absolute path or path relative to the folder from
which you run the command. If you run Polyspace through the user interface, file_path is the
absolute path.

If you are running an analysis through the user interface, you can enter this option in the Other field,
under the Advanced Settings node on the Configuration pane. See Other.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these annotations to
Polyspace. You do not have to review and justify results that you have already annotated. Similarly, if
your code comments must adhere to a specific format, you can map and import that format to
Polyspace.

Examples
Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero_div.c containing the following code,
and justified certain MISRA C: 2012 violations by using custom annotations.

3 Analysis Options, Command-Line Only

3-44

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace annotation syntax.
Instead, you use a convention where you place all MISRA rules in a single numbered list. In this list,
rules 8.4 and 8.7 correspond to the numbers 50 and 51.You can check this code for MISRA C: 2012
violations by typing the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all
• Code Prover:

polyspace-code-prover -sources source_path -misra3 all
• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all
• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify them again.

 -xml-annotations-description

3-45

This XML example defines the annotation format used in zero_div.c and maps it to the Polyspace
annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or more
comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7 respectively. The
mapping uses the Polyspace annotation syntax.

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example annotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>

3 Analysis Options, Command-Line Only

3-46

 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace\annotations
\.

2 Rerun the analysis on zero_div.c by using the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover:

polyspace-code-prover -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List pane.

 -xml-annotations-description

3-47

See Also
Topics
“Prepare Scripts for Polyspace Analysis”
“Define Custom Annotation Format” (Polyspace Bug Finder)
“Annotation Description Full XML Template” (Polyspace Bug Finder)

Introduced in R2017b

3 Analysis Options, Command-Line Only

3-48

	Commands
	polyspace-access
	polyspace-bug-finder-server Command
	polyspace-configure
	polyspace-report-generator
	polyspace-comments-import
	polyspaceroot
	polyspaceBugFinderServer
	polyspaceConfigure
	polyspace_report
	polyspace.Project
	polyspace.Options
	polyspace.DefectsOptions
	polyspace.CodingRulesOptions
	polyspace.GenericTargetOptions
	polyspace.BugFinderResults
	polyspace.Project.Configuration
	polyspace.Options.copyTo
	polyspace.Options.generateProject
	polyspace.Options.toScript
	polyspace.Project.run
	polyspace.BugFinderResults.getSummary
	polyspace.BugFinderResults.getResults

	Analysis Options
	Source code language (-lang)
	C standard version (-c-version)
	C++ standard version (-cpp-version)
	Compiler (-compiler)
	Target processor type (-target)
	ARM v5 Compiler (-compiler armcc)
	ARM v6 Compiler (-compiler armclang)
	NXP CodeWarrior Compiler (-compiler codewarrior)
	Cosmic Compiler (-compiler cosmic)
	Diab Compiler (-compiler diab)
	Green Hills Compiler (-compiler greenhills)
	IAR Embedded Workbench Compiler (-compiler iar-ew)
	MPLAB XC8 C Compiler (-compiler microchip)
	Renesas Compiler (-compiler renesas)
	TASKING Compiler (-compiler tasking)
	Texas Instruments Compiler (-compiler ti)
	Generic target options
	Sfr type support (-sfr-types)
	Division round down (-div-round-down)
	Enum type definition (-enum-type-definition)
	Signed right shift (-logical-signed-right-shift)
	Block char16/32_t types (-no-uliterals)
	Pack alignment value (-pack-alignment-value)
	Ignore pragma pack directives (-ignore-pragma-pack)
	Management of size_t (-size-t-type-is)
	Management of wchar_t (-wchar-t-type-is)
	Ignore link errors (-no-extern-c)
	Preprocessor definitions (-D)
	Disabled preprocessor definitions (-U)
	Source code encoding (-sources-encoding)
	Code from DOS or Windows file system (-dos)
	Stop analysis if a file does not compile (-stop-if-compile-error)
	Command/script to apply to preprocessed files (-post-preprocessing-command)
	Include (-include)
	Include folders (-I)
	Constraint setup (-data-range-specifications)
	Ignore default initialization of global variables (-no-def-init-glob)
	No STL stubs (-no-stl-stubs)
	Functions to stub (-functions-to-stub)
	Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)
	Generate results for sources and (-generate-results-for)
	Do not generate results for (-do-not-generate-results-for)
	External multitasking configuration
	OIL files selection (-osek-multitasking)
	ARXML files selection (-autosar-multitasking)
	Configure multitasking manually
	Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)
	Tasks (-entry-points)
	Cyclic tasks (-cyclic-tasks)
	Interrupts (-interrupts)
	Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)
	Critical section details (-critical-section-begin -critical-section-end)
	Temporally exclusive tasks (-temporal-exclusions-file)
	Set checkers by file (-checkers-selection-file)
	Check MISRA C:2004 (-misra2)
	Check MISRA AC AGC (-misra-ac-agc)
	Check MISRA C:2012 (-misra3)
	Use generated code requirements (-misra3-agc-mode)
	Effective boolean types (-boolean-types)
	Allowed pragmas (-allowed-pragmas)
	Check custom rules (-custom-rules)
	Check MISRA C++:2008 (-misra-cpp)
	Check JSF AV C++ rules (-jsf-coding-rules)
	Check AUTOSAR C++ 14 (-autosar-cpp14)
	Check SEI CERT-C (-cert-c)
	Check SEI CERT-C++ (-cert-cpp)
	Check ISO/IEC TS 17961 (-iso-17961)
	Calculate code metrics (-code-metrics)
	Find defects (-checkers)
	Run stricter checks considering all values of system inputs (-checks-using-system-input-values)
	Consider inputs to these functions (-system-inputs-from)
	Class (-class-analyzer)
	Functions to call within the specified classes (-class-analyzer-calls)
	Analyze class contents only (-class-only)
	Initialization functions (-functions-called-before-main)
	Verify initialization section of code only (-init-only-mode)
	Verify whole application
	Show global variable sharing and usage only (-shared-variables-mode)
	Main entry point (-main)
	Functions to call (-main-generator-calls)
	Variables to initialize (-main-generator-writes-variables)
	Skip member initialization check (-no-constructors-init-check)
	Verify files independently (-unit-by-unit)
	Common source files (-unit-by-unit-common-source)
	Verify model generated code (-main-generator)
	Initialization functions (-functions-called-before-loop)
	Step functions (-functions-called-in-loop)
	Termination functions (-functions-called-after-loop)
	Parameters (-variables-written-before-loop)
	Inputs (-variables-written-in-loop)
	Verify module or library (-main-generator)
	Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)
	Float rounding mode (-float-rounding-mode)
	Respect types in fields (-respect-types-in-fields)
	Respect types in global variables (-respect-types-in-globals)
	Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)
	Allow negative operand for left shifts (-allow-negative-operand-in-shift)
	Consider non finite floats (-allow-non-finite-floats)
	Infinities (-check-infinite)
	Check that global variables are initialized after warm reboot (-check-globals-init)
	NaNs (-check-nan)
	Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
	Detect stack pointer dereference outside scope (-detect-pointer-escape)
	Disable checks for non-initialization (-disable-initialization-checks)
	Permissive function pointer calls (-permissive-function-pointer)
	Overflow mode for signed integer (-signed-integer-overflows)
	Overflow mode for unsigned integer (-unsigned-integer-overflows)
	Allow incomplete or partial allocation of structures (-size-in-bytes)
	Subnormal detection mode (-check-subnormal)
	Detect uncalled functions (-uncalled-function-checks)
	Sensitivity context (-context-sensitivity)
	Improve precision of interprocedural analysis (-path-sensitivity-delta)
	Precision level (-O)
	Specific precision (-modules-precision)
	Verification level (-to)
	Verification time limit (-timeout)
	Inline (-inline)
	Depth of verification inside structures (-k-limiting)
	Generate report
	Bug Finder and Code Prover report (-report-template)
	Output format (-report-output-format)
	Run Bug Finder or Code Prover analysis on a remote cluster (-batch)
	Upload results to Polyspace Metrics (-add-to-results-repository)
	Use fast analysis mode for Bug Finder (-fast-analysis)
	Command/script to apply after the end of the code verification (-post-analysis-command)
	Automatic Orange Tester (-automatic-orange-tester)
	Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)
	Number of automatic tests (-automatic-orange-tester-tests-number)
	Maximum test time (-automatic-orange-tester-timeout)
	Other

	Analysis Options, Command-Line Only
	-asm-begin -asm-end
	-author
	-code-behavior-specifications
	-custom-target
	-date
	-doc | -documentation
	-dump-preprocessing-info
	-generate-launching-script-for
	-h | -help
	-I
	-import-comments
	-list-all-values
	-max-processes
	-non-preemptable-tasks
	-options-file
	-options-for-sources
	-preemptable-interrupts
	-prog
	-regex-replace-rgx -regex-replace-fmt
	-report-output-name
	-results-dir
	-scheduler
	-sources
	-sources-list-file
	-submit-job-from-previous-compilation-results
	-termination-functions
	-tmp-dir-in-results-dir
	-v | -version
	-xml-annotations-description

